High-resolution near-field optical imaging of single nuclear pore complexes under physiological conditions

被引:45
作者
Höppener, C
Siebrasse, JP
Peters, R
Kubitscheck, U
Naber, A
机构
[1] Univ Karlsruhe, Inst Angew Phys, D-76131 Karlsruhe, Germany
[2] Univ Munster, Inst Med Phys & Biophys, D-4400 Munster, Germany
[3] Univ Bonn, Inst Phys & Theoret Chem, D-5300 Bonn, Germany
关键词
D O I
10.1529/biophysj.104.051458
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Scanning near-field optical microscopy (SNOM) circumvents the diffraction limit of conventional light microscopy and is able to achieve optical resolutions substantially below 100 nm. However, in the field of cell biology SNOM has been rarely applied, probably because previous techniques for sample-distance control are less sensitive in liquid than in air. Recently we developed a distance control based on a tuning fork in tapping mode, which is also well-suited for imaging in solution. Here we show that this approach can be used to visualize single membrane protein complexes kept in physiological media throughout. Nuclear envelopes were isolated from Xenopus laevis oocytes at conditions shown recently to conserve the transport functions of the nuclear pore complex (NPC). Isolated nuclear envelopes were fluorescently labeled by antibodies against specific proteins of the NPC (NUP153 and p62) and imaged at a resolution of similar to 60 nm. The lateral distribution of epitopes within the supramolecular NPC could be inferred from an analysis of the intensity distribution of the fluorescence spots. The different number densities of p62- and NUP153-labeled NPCs are determined and discussed. Thus we show that SNOM opens up new possibilities for directly visualizing the transport of single particles through single NPCs and other transporters.
引用
收藏
页码:3681 / 3688
页数:8
相关论文
共 52 条
[1]   NUCLEAR-PROTEIN IMPORT IN PERMEABILIZED MAMMALIAN-CELLS REQUIRES SOLUBLE CYTOPLASMIC FACTORS [J].
ADAM, SA ;
MARR, RS ;
GERACE, L .
JOURNAL OF CELL BIOLOGY, 1990, 111 (03) :807-816
[2]  
Adam SA, 2001, GENOME BIOL, V2
[3]  
Allen TD, 2000, J CELL SCI, V113, P1651
[4]   Gradient of increasing affinity of importin β for nucleoporins along the pathway of nuclear import [J].
Ben-Efraim, I ;
Gerace, L .
JOURNAL OF CELL BIOLOGY, 2001, 152 (02) :411-417
[5]   COMBINED SHEAR FORCE AND NEAR-FIELD SCANNING OPTICAL MICROSCOPY [J].
BETZIG, E ;
FINN, PL ;
WEINER, JS .
APPLIED PHYSICS LETTERS, 1992, 60 (20) :2484-2486
[6]   BREAKING THE DIFFRACTION BARRIER - OPTICAL MICROSCOPY ON A NANOMETRIC SCALE [J].
BETZIG, E ;
TRAUTMAN, JK ;
HARRIS, TD ;
WEINER, JS ;
KOSTELAK, RL .
SCIENCE, 1991, 251 (5000) :1468-1470
[7]   SINGLE MOLECULES OBSERVED BY NEAR-FIELD SCANNING OPTICAL MICROSCOPY [J].
BETZIG, E ;
CHICHESTER, RJ .
SCIENCE, 1993, 262 (5138) :1422-1425
[8]   Piezoelectrical shear-force control on soft biological samples in aqueous solution [J].
Brunner, R ;
Hering, O ;
Marti, O ;
Hollricher, O .
APPLIED PHYSICS LETTERS, 1997, 71 (25) :3628-3630
[9]   Karyopherins and nuclear import [J].
Chook, YM ;
Blobel, G .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2001, 11 (06) :703-715
[10]   Nucleocytoplasmic transport enters the atomic age [J].
Conti, E ;
Izaurralde, E .
CURRENT OPINION IN CELL BIOLOGY, 2001, 13 (03) :310-319