A temporal gene expression map of Chrysanthemum leaves infected with Alternaria alternata reveals different stages of defense mechanisms

被引:28
作者
Liu, Ye [1 ]
Xin, Jingjing [1 ]
Liu, Lina [1 ]
Song, Aiping [1 ]
Guan, Zhiyong [1 ]
Fang, Weimin [1 ]
Chen, Fadi [1 ]
机构
[1] Nanjing Agr Univ, Coll Hort, State Key Lab Crop Genet & Germplasm Enhancement, Key Lab Landscaping,Minist Agr & Rural Affairs, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
GENOME-WIDE ANALYSIS; TRANSCRIPTION FACTORS; COEXPRESSION NETWORK; DISEASE RESISTANCE; SALICYLIC-ACID; PLANT DEFENSE; ARABIDOPSIS; ETHYLENE; CALCIUM; RESPONSES;
D O I
10.1038/s41438-020-0245-0
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Chrysanthemum (Chrysanthemum morifolium) black spot disease (CBS) poses a major threat to Chrysanthemum cultivation owing to suitable climate conditions and current lack of resistant cultivars for greenhouse cultivation. In this study, we identified a number of genes that respond to Alternaria alternata infection in resistant and susceptible Chrysanthemum cultivars. Based on RNA sequencing technology and a weighted gene coexpression network analysis (WGCNA), we constructed a model to elucidate the response of Chrysanthemum leaves to A. alternata infection at different stages and compared the mapped response of the resistant cultivar 'Jinba' to that of the susceptible cultivar 'Zaoyihong'. In the early stage of infection, when lesions had not yet formed, abscisic acid (ABA), salicylic acid (SA) and EDS1-mediated resistance played important roles in the Chrysanthemum defense system. With the formation of necrotic lesions, ethylene (ET) metabolism and the Ca2+ signal transduction pathway strongly responded to A. alternata infection. During the late stage, when necrotic lesions continued to expand, members of the multidrug and toxic compound extrusion (MATE) gene family were highly expressed, and their products may be involved in defense against A. alternata invasion by exporting toxins produced by the pathogen, which plays important roles in the pathogenicity of A. alternata. Furthermore, the function of hub genes was verified by qPCR and transgenic assays. The identification of hub genes at different stages, the comparison of hub genes between the two cultivars and the highly expressed genes in the resistant cultivar 'Jinba' provide a theoretical basis for breeding cultivars resistant to CBS.
引用
收藏
页数:14
相关论文
共 68 条
[1]   ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis [J].
Adie, Bruce A. T. ;
Perez-Perez, Julian ;
Perez-Perez, Manuel M. ;
Godoy, Marta ;
Sanchez-Serrano, Jose-J. ;
Schmelz, Eric A. ;
Solano, Roberto .
PLANT CELL, 2007, 19 (05) :1665-1681
[2]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[3]   NLR diversity, helpers and integrated domains: making sense of the NLR IDentity [J].
Baggs, E. ;
Dagdas, G. ;
Krasileva, K. V. .
CURRENT OPINION IN PLANT BIOLOGY, 2017, 38 :59-67
[4]   Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity [J].
Birkenbihl, Rainer P. ;
Kracher, Barbara ;
Somssich, Imre E. .
PLANT CELL, 2017, 29 (01) :20-38
[5]   Arabidopsis WRKY33 Is a Key Transcriptional Regulator of Hormonal and Metabolic Responses toward Botrytis cinerea Infection [J].
Birkenbihl, Rainer P. ;
Diezel, Celia ;
Somssich, Imre E. .
PLANT PHYSIOLOGY, 2012, 159 (01) :266-285
[6]   Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells [J].
Brandt, Benjamin ;
Munemasa, Shintaro ;
Wang, Cun ;
Desiree Nguyen ;
Yong, Taiming ;
Yang, Paul G. ;
Poretsky, Elly ;
Belknap, Thomas F. ;
Waadt, Rainer ;
Aleman, Fernando ;
Schroeder, Julian I. .
ELIFE, 2015, 4 :1-25
[7]   Ethylene: Traffic Controller on Hormonal Crossroads to Defense [J].
Broekgaarden, Colette ;
Caarls, Lotte ;
Vos, Irene A. ;
Pieterse, Corne M. J. ;
Van Wees, Saskia C. M. .
PLANT PHYSIOLOGY, 2015, 169 (04) :2371-2379
[8]   A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis [J].
Brown, RL ;
Kazan, K ;
McGrath, KC ;
Maclean, DJ ;
Manners, JM .
PLANT PHYSIOLOGY, 2003, 132 (02) :1020-1032
[9]   Evolutionary Conservation of ABA Signaling for Stomatal Closure [J].
Cai, Shengguan ;
Chen, Guang ;
Wang, Yuanyuan ;
Huang, Yuqing ;
Marchant, D. Blaine ;
Wang, Yizhou ;
Yang, Qian ;
Dai, Fei ;
Hills, Adrian ;
Franks, Peter J. ;
Nevo, Eviatar ;
Soltis, Douglas E. ;
Soltis, Pamela S. ;
Sessa, Emily ;
Wolf, Paul G. ;
Xue, Dawei ;
Zhang, Guoping ;
Pogson, Barry J. ;
Blatt, Michael R. ;
Chen, Zhong-Hua .
PLANT PHYSIOLOGY, 2017, 174 (02) :732-747
[10]   NB-LRRs work a "bait and switch" on pathogens [J].
Collier, Sarah M. ;
Moffett, Peter .
TRENDS IN PLANT SCIENCE, 2009, 14 (10) :521-529