Modulating Sound with Acoustic Metafiber Bundles

被引:36
作者
Xia, Jian-ping [1 ]
Sun, Hong-xiang [1 ,2 ]
Yuan, Shou-qi [1 ]
机构
[1] Jiangsu Univ, Res Ctr Fluid Machinery Engn & Technol, Fac Sci, Zhenjiang 212013, Peoples R China
[2] Chinese Acad Sci, Inst Acoust, State Key Lab Acoust, Beijing 100190, Peoples R China
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
中国国家自然科学基金;
关键词
METAMATERIALS; LIGHT; METASURFACE; PHASE; PROPAGATION; REFLECTION; WAVES;
D O I
10.1038/s41598-017-07232-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acoustic metamaterials and metasurfaces provide great flexibility for manipulating sound waves and promise unprecedented functionality, ranging from transformation acoustics, acoustic cloaking, acoustic imaging to acoustic rerouting. However, the design of artificial structures with both broad bandwidth and multifunctionality remains challenging with traditional design approaches. Here we present a design and realization of a broadband acoustic metafiber bundle. Very different from previously reported acoustic metamaterials and metasurfaces, not only the metafiber structure is simple, flexible and tunable, but also the metafiber bundle has the advantages of broad bandwidth, high transmission, no resonance-induced energy loss and unchangeable output wavefront owing to eigenmodes in the passbands of the metafiber. Besides, it could also achieve arbitrary complex modulations of cylindrical and plane acoustic wavefronts. The metafiber bundles realize the exciting multifunctionality of both acoustic metamaterials and metasurfaces in a broad frequency range, which provides diverse routes to design novel acoustic devices with versatile applications.
引用
收藏
页数:9
相关论文
共 62 条
  • [1] Harnessing Deformation to Switch On and Off the Propagation of Sound
    Babaee, Sahab
    Viard, Nicolas
    Wang, Pai
    Fang, Nicholas X.
    Bertoldi, Katia
    [J]. ADVANCED MATERIALS, 2016, 28 (08) : 1631 - 1635
  • [2] Active and tunable metamaterials
    Boardman, Allan D.
    Grimalsky, Volodymyr V.
    Kivshar, Yuri S.
    Koshevaya, Svetlana V.
    Lapine, Mikhail
    Litchinitser, Natalia M.
    Malnev, Vadim N.
    Noginov, Mikhail
    Rapoport, Yuriy G.
    Shalaev, Vladimir M.
    [J]. LASER & PHOTONICS REVIEWS, 2011, 5 (02) : 287 - 307
  • [3] Brongersma ML, 2014, NAT MATER, V13, P451, DOI [10.1038/NMAT3921, 10.1038/nmat3921]
  • [4] Acoustic cloaking in three dimensions using acoustic metamaterials
    Chen, Huanyang
    Chan, C. T.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (18)
  • [5] Cheng Y, 2015, NAT MATER, V14, P1013, DOI [10.1038/NMAT4393, 10.1038/nmat4393]
  • [6] A multilayer structured acoustic cloak with homogeneous isotropic materials
    Cheng, Ying
    Yang, Fan
    Xu, Jian Yi
    Liu, Xiao Jun
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (15)
  • [7] Anisotropic Metamaterials for Full Control of Acoustic Waves
    Christensen, Johan
    Javier Garcia de Abajo, F.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (12)
  • [8] Controlling sound with acoustic metamaterials
    Cummer, Steven A.
    Christensen, Johan
    Alu, Andrea
    [J]. NATURE REVIEWS MATERIALS, 2016, 1 (03):
  • [9] Acoustic carpet cloak based on an ultrathin metasurface
    Esfahlani, Hussein
    Karkar, Sami
    Lissek, Herve
    Mosig, Juan R.
    [J]. PHYSICAL REVIEW B, 2016, 94 (01)
  • [10] Dynamic electromagnetic metamaterials
    Fan, Kebin
    Padilla, Willie J.
    [J]. MATERIALS TODAY, 2015, 18 (01)