NONLINEAR CROSS-DIFFUSION WITH SIZE EXCLUSION

被引:91
作者
Burger, Martin [1 ]
Di Francesco, Marco [2 ,4 ]
Pietschmann, Jan-Frederik [3 ]
Schlake, Baebel [1 ]
机构
[1] Univ Munster, Inst Numer & Angew Math, D-48149 Munster, Germany
[2] Univ Aquila, Dipartimento Matemat Pura & Applicata, I-67100 Laquila, Italy
[3] Univ Cambridge, DAMTP, Cambridge CB3 0WA, England
[4] WWU Univ Munster, Inst Computat & Appl Math, Munster, Germany
关键词
diffusion; size exclusion; cross-diffusion; ion channels; large-time behavior; KELLER-SEGEL MODEL; POPULATION-MODEL; EQUATIONS; PLANCK; CHEMOTAXIS; DENSITY; SYSTEM;
D O I
10.1137/100783674
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to investigate the mathematical properties of a continuum model for diffusion of multiple species incorporating size exclusion effects. The system for two species leads to nonlinear cross-diffusion terms with double degeneracy, which creates significant novel challenges in the analysis of the system. We prove global existence of weak solutions and well-posedness of strong solutions close to equilibrium. We further study some asymptotics of the model, and in particular we characterize the large-time behavior of solutions.
引用
收藏
页码:2842 / 2871
页数:30
相关论文
共 48 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]  
Ambrosio L., 2005, Lectures in Mathematics ETH Zurich
[3]  
[Anonymous], 1968, TRANSLATIONS MATH MO
[4]  
[Anonymous], 2003, CAN APPL MATH Q
[5]   On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations [J].
Arnold, A ;
Markowich, P ;
Toscani, G ;
Unterreiter, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (1-2) :43-100
[6]   Ion flow through narrow membrane channels: part II [J].
Barcilon, Victor ;
Chen, D.-P. ;
Eisenberg, R.S. .
SIAM Journal on Applied Mathematics, 1992, 52 (05) :1405-1425
[7]  
Bregman L. M., 1967, USSR Comput Math Math Phys, V7, P200, DOI [10.1016/0041-5553(67)90040-7, DOI 10.1016/0041-5553(67)90040-7]
[8]   Inverse total variation flow [J].
Burger, M. ;
Frick, K. ;
Osher, S. ;
Scherzer, O. .
MULTISCALE MODELING & SIMULATION, 2007, 6 (02) :366-395
[9]  
BURGER M, 2010, NONLINEAR POIS UNPUB
[10]  
Calvez V, 2008, COMMUN MATH SCI, V6, P417