Bayesian Manifold Learning: The Locally Linear Latent Variable Model

被引:0
作者
Park, Mijung [1 ]
Jitkrittum, Wittawat [1 ]
Qamar, Ahmad [1 ,2 ]
Szabo, Zoltan [1 ]
Buesing, Lars [1 ,3 ]
Sahani, Maneesh [1 ]
机构
[1] UCL, Gatsby Computat Neurosci Unit, London, England
[2] Thread Genius, New York, NY USA
[3] Google DeepMind, London, England
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015) | 2015年 / 28卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce the Locally Linear Latent Variable Model (LL-LVM), a probabilistic model for non-linear manifold discovery that describes a joint distribution over observations, their manifold coordinates and locally linear maps conditioned on a set of neighbourhood relationships. The model allows straightforward variational optimisation of the posterior distribution on coordinates and locally linear maps from the latent space to the observation space given the data. Thus, the LL-LVM encapsulates the local-geometry preserving intuitions that underlie non-probabilistic methods such as locally linear embedding (LLE). Its probabilistic semantics make it easy to evaluate the quality of hypothesised neighbourhood relationships, select the intrinsic dimensionality of the manifold, construct out-of-sample extensions and to combine the manifold model with additional probabilistic models that capture the structure of coordinates within the manifold.
引用
收藏
页数:9
相关论文
共 17 条
[1]  
[Anonymous], 2003, Advances in Neural Information Processing Systems 15, DOI DOI 10.1109/34.682189
[2]  
Balasubramanian M, 2002, SCIENCE, V295
[3]  
Beal M.J., 2003, THESIS
[4]  
Belkin M, 2002, ADV NEUR IN, V14, P585
[5]  
Bishop Christopher, 2006, Pattern Recognition and Machine Learning, DOI 10.1117/1.2819119
[6]  
Cayton L., 2005, Univ. of California at San Diego Tech. Rep, V12, P1
[7]  
Lawrence ND, 2004, ADV NEUR IN, V16, P329
[8]  
Lawrence Neil., 2011, Proc. 14th Intn'l Conf. Artificial Intelligence and Statistics (AISTATS), P51
[9]   THE US HISTORICAL CLIMATOLOGY NETWORK MONTHLY TEMPERATURE DATA, VERSION 2 [J].
Menne, Matthew J. ;
Williams, Claude N., Jr. ;
Vose, Russell S. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2009, 90 (07) :993-1007
[10]  
Platt J., 2005, P 10 INT WORKSH ART, P261