Parallel Processing of Intra-cranial Electroencephalogram Readings on Distributed Memory Systems

被引:0
作者
Pineyro, Leonardo [1 ]
Nesmachnow, Sergio [1 ]
机构
[1] Univ Republica, Fac Ingn, Ctr Calculo, Montevideo, Uruguay
来源
HIGH PERFORMANCE COMPUTING | 2018年 / 796卷
关键词
Feature extraction; Distributed computing; Large-scale processing; SEIZURE PREDICTION; EEG; EPILEPSY;
D O I
10.1007/978-3-319-73353-1_19
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This article presents an approach for parallel processing of electroencephalogram readings over distributed memory systems. This is a complex problem that deals with a significantly large amount of data, especially considering that the volume of electroencephalogram readings has been growing for the last few years due to their handling in medical and health applications. Different parallelization and workload distribution techniques applied to processing intra-cranial electroencephalogram readings are studied, in order to efficiently detect whether a patient may suffer a seizure or not. More precisely, two separate approaches are presented: a first one describing a traditional Message Passing Interface implementation for cluster systems, and a second implementation using Apache Hadoop, more adapted to large-scale processing in cloud systems. The experimental evaluation performed on standard datasets demonstrates that it is possible to remarkably speedup electroencephalogram processing by applying efficient data distribution strategies. The parallel/distributed approach allows accelerating the execution time up to 22x when compared with the sequential version.
引用
收藏
页码:262 / 276
页数:15
相关论文
共 19 条
[1]  
[Anonymous], 1995, Designing and Building Parallel Programs
[2]  
Bendat J.S., 1980, Engineering applications of correlation and spectral analysis
[3]   Crowdsourcing reproducible seizure forecasting in human and canine epilepsy [J].
Brinkmann, Benjamin H. ;
Wagenaar, Joost ;
Abbot, Drew ;
Adkins, Phillip ;
Bosshard, Simone C. ;
Chen, Min ;
Tieng, Quang M. ;
He, Jialune ;
Munoz-Almaraz, F. J. ;
Botella-Rocamora, Paloma ;
Pardo, Juan ;
Zamora-Martinez, Francisco ;
Hills, Michael ;
Wu, Wei ;
Korshunova, Iryna ;
Cukierski, Will ;
Vite, Charles ;
Patterson, Edward E. ;
Litt, Brian ;
Worrell, Gregory A. .
BRAIN, 2016, 139 :1713-1722
[4]   Shannon entropy applied to the measurement of the electroencephalographic effects of desflurane [J].
Bruhn, J ;
Lehmann, LE ;
Röpcke, H ;
Bouillon, TW ;
Hoeft, A .
ANESTHESIOLOGY, 2001, 95 (01) :30-35
[5]  
Burns M, 2013, LARGE SCALE ELECTROE
[6]   Parallel distributed computing using Python']Python [J].
Dalcin, Lisandro D. ;
Paz, Rodrigo R. ;
Kler, Pablo A. ;
Cosimo, Alejandro .
ADVANCES IN WATER RESOURCES, 2011, 34 (09) :1124-1139
[7]   A novel implanted device to wirelessly record and analyze continuous intracranial canine EEG [J].
Davis, Kathryn A. ;
Sturges, Beverly K. ;
Vite, Charles H. ;
Ruedebusch, Vanessa ;
Worrell, Gregory ;
Gardner, Andrew B. ;
Leyde, Kent ;
Sheffield, W. Douglas ;
Litt, Brian .
EPILEPSY RESEARCH, 2011, 96 (1-2) :116-122
[8]   Efficient Big Data Processing in Hadoop MapReduce [J].
Dittrich, Jens ;
Quiane-Ruiz, Jorge-Arnulfo .
PROCEEDINGS OF THE VLDB ENDOWMENT, 2012, 5 (12) :2014-2015
[9]  
El Kassabi Hadeel T., 2016, International Journal of Computer and Information Technology, V5, P158
[10]   Joining the benefits: Combining epileptic seizure prediction methods [J].
Feldwisch-Drentrup, Hinnerk ;
Schelter, Bjoern ;
Jachan, Michael ;
Nawrath, Jakob ;
Timmer, Jens ;
Schulze-Bonhage, Andreas .
EPILEPSIA, 2010, 51 (08) :1598-1606