Normalization and global analysis of perturbations of the hydrogen atom

被引:28
作者
Efstathiou, K. [1 ]
Sadovskii, D. A. [2 ]
机构
[1] Univ Groningen, Dept Math, NL-9700 AK Groningen, Netherlands
[2] Univ Littoral Cote dOpale, Dept Phys, F-59140 Dunkerque, France
关键词
INTEGRABLE HAMILTONIAN-SYSTEMS; CIRCULAR RYDBERG STATES; STRONG MAGNETIC-FIELD; KUSTAANHEIMO-STIEFEL TRANSFORMATION; FRACTIONAL MONODROMY; QUANTUM MONODROMY; EXTENDED NEIGHBORHOODS; HARMONIC-OSCILLATOR; POISSON ACTIONS; CROSSED FIELDS;
D O I
10.1103/RevModPhys.82.2099
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The hydrogen atom perturbed by sufficiently small homogeneous static electric and magnetic fields of arbitrary mutual alignment is a specific perturbation of the Kepler system with three degrees of freedom and three parameters. Normalization of the Keplerian symmetry reveals that the parameter space is stratified into resonant zones of systems, each zone with an internal dynamical stratification of its own (Efstathiou, Sadovski, and Zhilinski, 2007, Proc. R. Soc. London, Ser. A 463, 1771). Based on the fully integrable approximation, the bundle of invariant tori of individual systems within zones is characterized globally and the qualitative dynamical stratification is uncovered. The techniques involved in this analysis are illustrated with the example of the 1:1 resonance zone (near orthogonal fields) whose structure is known at present. Applications in the corresponding quantum system are also described.
引用
收藏
页码:2099 / 2154
页数:56
相关论文
共 268 条
[21]  
BANDER M, 1966, REV MOD PHYS, V38, P330, DOI 10.1103/RevModPhys.38.330
[22]   On the theory of the hydrogen atom. [J].
Bargmann, V. .
ZEITSCHRIFT FUR PHYSIK, 1936, 99 (7-8) :576-582
[23]  
Barth W., 1984, Ergeb. Math. Grenzgeb., V4
[24]   Gluing torus families across a singularity: The lens space for the hydrogen atom in crossed fields [J].
Bartsch, Thomas ;
Gekle, Stephan ;
Main, Jorg ;
Uzer, Turgay .
PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2007, (166) :45-55
[25]  
BARUT AO, 1979, J MATH PHYS, V20, P2244, DOI 10.1063/1.524005
[26]   Complete integrability beyond Liouville-Arnol'd [J].
Bates, L ;
Cushman, R .
REPORTS ON MATHEMATICAL PHYSICS, 2005, 56 (01) :77-91
[27]   QUANTIZATION OF SINGULAR REDUCTION [J].
Bates, L. ;
Cushman, R. ;
Hamilton, M. ;
Sniatycki, J. .
REVIEWS IN MATHEMATICAL PHYSICS, 2009, 21 (03) :315-371
[28]   DEGENERATION OF HAMILTONIAN MONODROMY CYCLES [J].
BATES, L ;
ZOU, MR .
NONLINEARITY, 1993, 6 (02) :313-335
[29]   Scattering monodromy and the A1 singularity [J].
Bates, Larry ;
Cushman, Richard .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2007, 5 (03) :429-451
[30]   MONODROMY IN THE CHAMPAGNE BOTTLE [J].
BATES, LM .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1991, 42 (06) :837-847