Forster Resonance Energy Transfer Distance Dependence from Upconverting Nanoparticles to Quantum Dots

被引:79
作者
Melle, Sonia [1 ]
Calderon, Oscar G. [1 ]
Laurenti, Marco [2 ]
Mendez-Gonzalez, Diego [2 ]
Egatz-Gomez, Ana [4 ]
Lopez-Cabarcos, Enrique [2 ]
Cabrera-Granado, E. [1 ]
Diaz, Elena [3 ]
Rubio-Retama, Jorge [2 ]
机构
[1] Univ Complutense Madrid, Dept Opt, E-28037 Madrid, Spain
[2] Univ Complutense Madrid, Dept Chem Pharmaceut Sci, E-28040 Madrid, Spain
[3] Univ Complutense Madrid, GISC, Dept Mat Phys, E-28040 Madrid, Spain
[4] Arizona State Univ, Biodesign Inst, Ctr Appl Struct Discovery, Tempe, AZ 85287 USA
关键词
UP-CONVERSION NANOPARTICLES; IN-VIVO; FRET; CDTE; NANOPHOSPHORS; CDSE; IONS;
D O I
10.1021/acs.jpcc.8b04908
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Forster resonant energy transfer (FRET) with upconverting nanoparticles (UCNPs) as donors and quantum dots (QDs) as acceptors has been regarded as a promising tool for biosensing applications. In this work, we use time-resolved luminescence spectroscopy to analyze the UCNP-to-QD FRET and we focus on the most relevant parameter of the FRET phenomenon, UCNP-QD distance. This distance is controlled by a nanometric silica shell around the UCNP surface. We theoretically reproduce the experimental results applying FRET theory to the distribution of emitting erbium ions in the UCNP. This simple model allows us to estimate the contribution of every erbium ion to the final FRET response and to explore different strategies to improve FRET efficiency.
引用
收藏
页码:18751 / 18758
页数:8
相关论文
共 35 条
[11]   Solid-Phase Covalent Immobilization of Upconverting Nanoparticles for Biosensing by Luminescence Resonance Energy Transfer [J].
Doughan, Samer ;
Han, Yi ;
Uddayasankar, Uvaraj ;
Krull, Ulrich J. .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (16) :14061-14068
[12]   *ZWISCHENMOLEKULARE ENERGIEWANDERUNG UND FLUORESZENZ [J].
FORSTER, T .
ANNALEN DER PHYSIK, 1948, 2 (1-2) :55-75
[13]   Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications [J].
Hildebrandt, Niko ;
Spillmann, Christopher M. ;
Algar, W. Russ ;
Pons, Thomas ;
Stewart, Michael H. ;
Oh, Eunkeu ;
Susumu, Kimihiro ;
Diaz, Sebastian A. ;
Delehanty, James B. ;
Medintz, Igor L. .
CHEMICAL REVIEWS, 2017, 117 (02) :536-711
[14]   Multifunctional Liposome Nanocarriers Combining Upconverting Nanoparticles and Anticancer Drugs [J].
Huang, Yue ;
Hemmer, Eva ;
Rosei, Federico ;
Vetrone, Fiorenzo .
JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (22) :4992-5001
[15]   Upconversion Nanoparticle-Based FRET System for Study of siRNA in Live Cells [J].
Jiang, Shan ;
Zhang, Yong .
LANGMUIR, 2010, 26 (09) :6689-6694
[16]  
KNUTH D, 1999, ART COMPUTER PROGRAM, V2
[17]   Upconversion fluorescence enables homogeneous immunoassay in whole blood [J].
Kuningas, Katri ;
Pakkila, Henna ;
Ukonaho, Telle ;
Rantanen, Terhi ;
Lovgren, Timo ;
Soukka, Tero .
CLINICAL CHEMISTRY, 2007, 53 (01) :145-146
[18]  
Lakowicz J. R., 2006, Principles of fluorescence spectroscopy, DOI [DOI 10.1007/978-0-387-46312-4, DOI 10.1007/978-0-387-46312-4/COVER]
[19]   An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4: Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence [J].
Li, Zhengquan ;
Zhang, Yong .
NANOTECHNOLOGY, 2008, 19 (34)
[20]   Ultrasensitive Nanosensors Based on Upconversion Nanoparticles for Selective Hypoxia Imaging in Vivo upon Near-Infrared Excitation [J].
Liu, Jianan ;
Liu, Yong ;
Bu, Wenbo ;
Bu, Jiwen ;
Sun, Yong ;
Du, Jiulin ;
Shi, Jianlin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (27) :9701-9709