Initial Performance and Durability of Ultra-Low Loaded NSTF Electrodes for PEM Electrolyzers

被引:137
作者
Debe, M. K. [1 ]
Hendricks, S. M. [1 ]
Vernstrom, G. D. [1 ]
Meyers, M. [1 ]
Brostrom, M. [1 ]
Stephens, M. [1 ]
Chan, Q. [1 ]
Willey, J. [2 ]
Hamden, M. [2 ]
Mittelsteadt, C. K. [2 ]
Capuano, C. B. [3 ]
Ayers, K. E. [3 ]
Anderson, E. B. [3 ]
机构
[1] 3M Co, Corp Res 3M, St Paul, MN 55144 USA
[2] Giner Inc, Newton, MA 02466 USA
[3] Proton OnSite, Wallingford, CT 06492 USA
关键词
THIN-FILM CATALYSTS; OXYGEN REDUCTION ACTIVITY; TRANSIENT CONDITIONS; ELECTROCATALYSTS; DISSOLUTION; PLATINUM;
D O I
10.1149/2.065206jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Water based electrolyzers offer a promising approach for generating hydrogen gas for renewable energy storage. 3M's nanostructured thin film (NSTF) catalyst technology platform has been shown to significantly reduce many of the performance, cost and durability barriers standing in the way of H-2/air PEM fuel cells for vehicles. In this paper we describe results from the first evaluations of low loaded NSTF catalysts in H-2/O-2 electrolyzers at Proton OnSite and Giner, Inc. Over two dozen membrane electrode assemblies comprising nine different NSTF catalyst types were tested in 11 short stack durability tests at Proton OnSite and 14 performance tests in 50 cm(2) single cells at Giner Electrochemical Systems. NSTF catalyst alloys of Pt68Co29Mn3, Pt50Ir50 and Pt50Ir25Ru25, with Pt loadings in the range of 0.1 to 0.2 mg/cm(2), were investigated for beginning-of-life performance and durability up to 4000 hours as both electrolyzer cathodes and anodes. Catalyst composition, deposition and process conditions were found to be important for meeting the performance of standard PGM blacks on electrolyzer anodes while using only 10% as much PGM catalyst. Analyses of MEA's after the durability tests by multiple techniques document changes in catalyst alloy composition, loading, crystallite structure and support stability. (C) 2012 The Electrochemical Society. [DOI:10.1149/2.065206jes] All rights reserved.
引用
收藏
页码:K165 / K176
页数:12
相关论文
共 32 条
  • [1] [Anonymous], 2007, ADV MEAS ENHANCED OP
  • [2] Catalyst Durability for Fuel Cells under Start-up and Shutdown Conditions: Evaluation of Ru and Ir Sputter-Deposited Films on Platinum in PEM Environment
    Atanasoska, L. L.
    Vernstrom, G. D.
    Haugen, G. M.
    Atanasoski, R. T.
    [J]. POLYMER ELECTROLYTE FUEL CELLS 11, 2011, 41 (01): : 785 - 795
  • [3] Research Advances Towards Low Cost, High Efficiency PEM Electrolysis
    Ayers, K. E.
    Anderson, E. B.
    Capuano, C. B.
    Carter, B. D.
    Dalton, L. T.
    Hanlon, G.
    Manco, J.
    Niedzwiecki, M.
    [J]. POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2, 2010, 33 (01): : 3 - 15
  • [4] Ayers K. E., 2011, 220 ECS M BOST MA OC
  • [5] Ayers Katherine, 2011, DOE HYDROGEN PROGRAM, pPD071
  • [6] H2O2 release during oxygen reduction reaction on Pt nanoparticles
    Bonakdarpour, Arman
    Dahn, Tara R.
    Atanasoski, R. T.
    Debe, M. K.
    Dahn, J. R.
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (11) : B208 - B211
  • [7] Oxygen reduction activity of Pt and Pt-Mn-Co electrocatalysts sputtered on nano-structured thin film support
    Bonakdarpour, Arman
    Stevens, Krystal
    Vernstrom, George D.
    Atanasoski, Radoslav
    Schmoeckel, Alison K.
    Debe, Mark K.
    Dahn, Jeff R.
    [J]. ELECTROCHIMICA ACTA, 2007, 53 (02) : 688 - 694
  • [8] Characterization of durable nanostructured thin film catalysts tested under transient conditions using analytical aberration-corrected electron microscopy
    Cullen, D. A.
    More, K. L.
    Reeves, K. S.
    Vernstrom, G. D.
    Atanasoska, L. L.
    Haugen, G. M.
    Atanasoski, R. T.
    [J]. POLYMER ELECTROLYTE FUEL CELLS 11, 2011, 41 (01): : 1099 - 1103
  • [9] Debe M., 2003, Handbook of Fuel Cells- Fundamentals, Technology, and Applications, V3, P576
  • [10] Nanostructured Thin Film Electrocatalysts - Current Status and Future Potential
    Debe, M. K.
    Atanasoski, R. T.
    Steinbach, A. J.
    [J]. POLYMER ELECTROLYTE FUEL CELLS 11, 2011, 41 (01): : 937 - 954