Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water

被引:914
作者
Liu, Jing-Fu [1 ]
Zhao, Zong-Shan [1 ]
Jiang, Gui-Bin [1 ]
机构
[1] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Environm Chem & Ecotoxicol, Beijing 100085, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1021/es800924c
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Humic acid (HA) coated Fe3O4 nanciparticles (Fe3O4/HA) were developed for the removal of toxic Hg(II), Pb(II), Cd(II), and Cu(II) from water. Fe3O4/HA were prepared by a coprecipitation procedure with cheap and environmentally friendly iron salts and HA. TOC and XPS analysis showed the as-prepared Fe3O4/ HA contains similar to 11% (w/w) of HA which are fractions abundant in O and N-based functional groups. TEM images and laser particle size analysis revealed the Fe3O4/HA (with similar to 10 nm Fe3O4 cores) aggregated in aqueous suspensions to form aggregates with an average hydrodynamic size of similar to 140 nm. With a saturation magnetization of 79.6 emu/g, the Fe3O4/HA can be simply recovered from water with magnetic separations at low magnetic field gradients within a few minutes. Sorption of the heavy metals to Fe3O4/HA reached equilibrium in less than 15 min, and agreed well to the Langmuir adsorption model with maximum adsorption capacities from 46.3 to 97.7 mg/g. The Fe3O4/HA was stable in tap water, natural waters, and acidic/ basic solutions ranging from 0.1 M HCl to 2 M NaOH with low leaching of Fe (<= 3.7%) and HA (<= 5.3%). The Fe3O4/HA was able to remove over 99% of Hg(II) and Pb(II) and over 95% of COO and Cd(II) in natural and tap water at optimized pH. Leaching back of the Fe3O4/HA sorbed heavy metals in water was found to be negligible.
引用
收藏
页码:6949 / 6954
页数:6
相关论文
共 40 条
[1]   Ultrafiltration of water containing natural organic matter: heavy metal removing in the hybrid complexation-ultrafiltration process [J].
Alpatova, A ;
Verbych, S ;
Bryk, M ;
Nigmatullin, R ;
Hilal, N .
SEPARATION AND PURIFICATION TECHNOLOGY, 2004, 40 (02) :155-162
[2]   Characterization of the porous structure of different humic fractions [J].
Alvarez-Puebla, RA ;
Goulet, PJG ;
Garrido, JJ .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2005, 256 (2-3) :129-135
[3]   Effect of pH on the aggregation of a gray humic acid in colloidal and solid states [J].
Alvarez-Puebla, RA ;
Garrido, JJ .
CHEMOSPHERE, 2005, 59 (05) :659-667
[4]   TRANSPORT OF HUMIC MATTER-COATED HEMATITE IN PACKED-BEDS [J].
AMIRBAHMAN, A ;
OLSON, TM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1993, 27 (13) :2807-2813
[5]   Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells [J].
Bulte, JWM ;
Douglas, T ;
Witwer, B ;
Zhang, SC ;
Strable, E ;
Lewis, BK ;
Zywicke, H ;
Miller, B ;
van Gelderen, P ;
Moskowitz, BM ;
Duncan, ID ;
Frank, JA .
NATURE BIOTECHNOLOGY, 2001, 19 (12) :1141-1147
[6]   Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions [J].
Chang, YC ;
Chen, DH .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005, 283 (02) :446-451
[7]   ADSORPTION OF CADMIUM AND HUMIC-ACID ONTO HEMATITE [J].
DAVIS, AP ;
BHATNAGAR, V .
CHEMOSPHERE, 1995, 30 (02) :243-256
[8]   ADSORPTION OF DISSOLVED ORGANICS IN LAKE WATER BY ALUMINUM-OXIDE - EFFECT OF MOLECULAR-WEIGHT [J].
DAVIS, JA ;
GLOOR, R .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1981, 15 (10) :1223-1229
[9]   COMPLEXATION OF TRACE-METALS BY ADSORBED NATURAL ORGANIC-MATTER [J].
DAVIS, JA .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1984, 48 (04) :679-691
[10]   Dendrimer enhanced ultrafiltration.: 1.: Recovery of Cu(II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups [J].
Diallo, MS ;
Christie, S ;
Swaminathan, P ;
Johnson, JH ;
Goddard, WA .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (05) :1366-1377