Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation

被引:355
作者
Hashimoto, Hideharu [1 ]
Liu, Yiwei [1 ]
Upadhyay, Anup K. [1 ]
Chang, Yanqi [1 ]
Howerton, Shelley B. [1 ]
Vertino, Paula M. [2 ,3 ]
Zhang, Xing [1 ]
Cheng, Xiaodong [1 ]
机构
[1] Emory Univ, Sch Med, Dept Biochem, Atlanta, GA 30322 USA
[2] Emory Univ, Sch Med, Dept Radiat Oncol, Atlanta, GA 30322 USA
[3] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
基金
美国国家卫生研究院;
关键词
DE-NOVO METHYLATION; ACTIVE DNA DEMETHYLATION; BASE EXCISION-REPAIR; SRA DOMAIN; MAMMALIAN DNA; CPG-BINDING; HUMAN DNMT3L; HUMAN UHRF1; GERM-CELLS; METHYLTRANSFERASE;
D O I
10.1093/nar/gks155
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cytosine residues in mammalian DNA occur in at least three forms, cytosine (C), 5-methylcytosine (M; 5mC) and 5-hydroxymethylcytosine (H; 5hmC). During semi-conservative DNA replication, hemi-methylated (M/C) and hemi-hydroxymethylated (H/C) CpG dinucleotides are transiently generated, where only the parental strand is modified and the daughter strand contains native cytosine. Here, we explore the role of DNA methyltransferases (DNMT) and ten eleven translocation (Tet) proteins in perpetuating these states after replication, and the molecular basis of their recognition by methyl-CpG-binding domain (MBD) proteins. Using recombinant proteins and modified double-stranded deoxyoligonucleotides, we show that DNMT1 prefers a hemi-methylated (M/C) substrate (by a factor of > 60) over hemi-hydroxymethylated (H/C) and unmodified (C/C) sites, whereas both DNMT3A and DNMT3B have approximately equal activity on all three substrates (C/C, M/C and H/C). Binding of MBD proteins to methylated DNA inhibited Tet1 activity, suggesting that MBD binding may also play a role in regulating the levels of 5hmC. All five MBD proteins generally have reduced binding affinity for 5hmC relative to 5mC in the fully modified context (H/M versus M/M), though their relative abilities to distinguish the two varied considerably. We further show that the deamination product of 5hmC could be excised by thymine DNA glycosylase and MBD4 glycosylases regardless of context.
引用
收藏
页码:4841 / 4849
页数:9
相关论文
共 67 条
[1]   The interaction of the SRA domain of ICBP90 with a novel domain of DNMT1 is involved in the regulation of VEGF gene expression [J].
Achour, M. ;
Jacq, X. ;
Ronde, P. ;
Alhosin, M. ;
Charlot, C. ;
Chataigneau, T. ;
Jeanblanc, M. ;
Macaluso, M. ;
Giordano, A. ;
Hughes, A. D. ;
Schini-Kerth, V. B. ;
Bronner, C. .
ONCOGENE, 2008, 27 (15) :2187-2197
[2]   Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism [J].
Arita, Kyohei ;
Ariyoshi, Mariko ;
Tochio, Hidehito ;
Nakamura, Yusuke ;
Shirakawa, Masahiro .
NATURE, 2008, 455 (7214) :818-U12
[3]   Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1 [J].
Avvakumov, George V. ;
Walker, John R. ;
Xue, Sheng ;
Li, Yanjun ;
Duan, Shili ;
Bronner, Christian ;
Arrowsmith, Cheryl H. ;
Dhe-Paganon, Sirano .
NATURE, 2008, 455 (7214) :822-U13
[4]   Reprogramming towards pluripotency requires AID-dependent DNA demethylation [J].
Bhutani, Nidhi ;
Brady, Jennifer J. ;
Damian, Mara ;
Sacco, Alessandra ;
Corbel, Stephane Y. ;
Blau, Helen M. .
NATURE, 2010, 463 (7284) :1042-U57
[5]   UHRF1 plays a role in maintaining DNA methylation in mammalian cells [J].
Bostick, Magnolia ;
Kim, Jong Kyong ;
Esteve, Pierre-Olivier ;
Clark, Amander ;
Pradhan, Sriharsa ;
Jacobsen, Steven E. .
SCIENCE, 2007, 317 (5845) :1760-1764
[6]   Dnmt3L and the establishment of maternal genomic imprints [J].
Bourc'his, D ;
Xu, GL ;
Lin, CS ;
Bollman, B ;
Bestor, TH .
SCIENCE, 2001, 294 (5551) :2536-2539
[7]   Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L [J].
Bourc'his, D ;
Bestor, TH .
NATURE, 2004, 431 (7004) :96-99
[8]   Two highly related p66 proteins comprise a new family of potent transcriptional repressors interacting with MBD2 and MBD3 [J].
Brackertz, M ;
Boeke, J ;
Zhang, R ;
Renkawitz, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (43) :40958-40966
[9]   The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation [J].
Callebaut, I ;
Courvalin, JC ;
Mornon, JP .
FEBS LETTERS, 1999, 446 (01) :189-193
[10]   The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a [J].
Chédin, F ;
Lieber, MR ;
Hsieh, CL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (26) :16916-16921