Calibration and validation of a semi-empirical flux ecosystem model for coniferous forests in the Boreal region

被引:37
作者
Minunno, F. [1 ]
Peltoniemi, M. [2 ]
Launiainen, S. [2 ]
Aurela, M. [3 ]
Lindroth, A. [4 ]
Lohila, A. [3 ]
Mammarella, I. [5 ]
Minkkinen, K. [1 ]
Makela, A. [1 ]
机构
[1] Univ Helsinki, Dept Forest Sci, POB 27, FIN-00014 Helsinki, Finland
[2] Nat Resources Inst Finland Luke, Jokiniemenkuja 1, Vantaa 01301, Finland
[3] Finnish Meteorol Inst, FI-00560 Helsinki, Finland
[4] Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden
[5] Univ Helsinki, Dept Phys, POB 48, FIN-00014 Helsinki, Finland
关键词
Forest modelling; PRELES; Eddy-fluxes; Boreal forest; Bayesian statistics; GROSS PRIMARY PRODUCTION; SCOTS PINE; CARBON BALANCE; BAYESIAN CALIBRATION; SENSITIVITY-ANALYSIS; USE EFFICIENCY; PEATLAND FOREST; NORWAY SPRUCE; CO2; EXCHANGE; PRODUCTIVITY;
D O I
10.1016/j.ecolmodel.2016.09.020
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Simple models are less input demanding and their calibration involves a lower number of parameters, however their general applicability to vast areas must be tested. We analysed if a simple ecosystem model (PRELES) can be applied to estimate carbon and water fluxes of Boreal forests at regional scale. Multi-site (M-S) and site-specific (S-S) calibrations were compared using evapotranspiration (ET) and gross primary production (GPP) measurements from 10 sites. The performances of M-S were similar to S-Ss except for a site with agricultural history. Although PRELES predicted GPP better than ET, we concluded that the model can be reliably used at regional scale to simulate carbon and water fluxes of Boreal forests. We further found that, in the calibration, the use of a long and carefully collected flux dataset from one site that covers a wide range of climate variability leads to better model performance in other sites as well. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 52
页数:16
相关论文
共 71 条
  • [41] Developing an empirical model of stand GPP with the LUE approach:: analysis of eddy covariance data at five contrasting conifer sites in Europe
    Makela, Annikki
    Pulkkinen, Minna
    Kolari, Pasi
    Lagergren, Fredrik
    Berbigier, Paul
    Lindroth, Anders
    Loustau, Denis
    Nikinmaa, Eero
    Vesala, Timo
    Hari, Pertti
    [J]. GLOBAL CHANGE BIOLOGY, 2008, 14 (01) : 92 - 108
  • [42] Relative Humidity Effect on the High-Frequency Attenuation of Water Vapor Flux Measured by a Closed-Path Eddy Covariance System
    Mammarella, Ivan
    Launiainen, Samuli
    Gronholm, Tiia
    Keronen, Petri
    Pumpanen, Jukka
    Rannik, Ullar
    Vesala, Timo
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2009, 26 (09) : 1856 - 1866
  • [43] Carbon balance of coniferous forests growing in contrasting climates: Model-based analysis
    Medlyn, BE
    Berbigier, P
    Clement, R
    Grelle, A
    Loustau, D
    Linder, S
    Wingate, L
    Jarvis, PG
    Sigurdsson, BD
    McMurtrie, RE
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2005, 131 (1-2) : 97 - 124
  • [44] Reconciling the optimal and empirical approaches to modelling stomatal conductance
    Medlyn, Belinda E.
    Duursma, Remko A.
    Eamus, Derek
    Ellsworth, David S.
    Prentice, I. Colin
    Barton, Craig V. M.
    Crous, Kristine Y.
    de Angelis, Paolo
    Freeman, Michael
    Wingate, Lisa
    [J]. GLOBAL CHANGE BIOLOGY, 2011, 17 (06) : 2134 - 2144
  • [45] Forest productivity under climate change: a checklist for evaluating model studies
    Medlyn, Belinda E.
    Duursma, Remko A.
    Zeppel, Melanie J. B.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-CLIMATE CHANGE, 2011, 2 (03) : 332 - 355
  • [46] MEYERS T P, 1988, Tellus Series B Chemical and Physical Meteorology, V40, P270, DOI 10.1111/j.1600-0889.1988.tb00297.x
  • [47] Selecting Parameters for Bayesian Calibration of a Process-Based Model: A Methodology Based on Canonical Correlation Analysis
    Minunno, F.
    van Oijen, M.
    Cameron, D. R.
    Pereira, J. S.
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2013, 1 (01): : 370 - 385
  • [48] Using a Bayesian framework and global sensitivity analysis to identify strengths and weaknesses of two process-based models differing in representation of autotrophic respiration
    Minunno, F.
    van Oijen, M.
    Cameron, D. R.
    Cerasoli, S.
    Pereira, J. S.
    Tome, M.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2013, 42 : 99 - 115
  • [49] Monteith J. L., 1981, STATE MOVEMENT WATER, P205
  • [50] FACTORIAL SAMPLING PLANS FOR PRELIMINARY COMPUTATIONAL EXPERIMENTS
    MORRIS, MD
    [J]. TECHNOMETRICS, 1991, 33 (02) : 161 - 174