Four-Bar Linkage Synthesis Using Non-convex Optimization

被引:8
作者
Goulet, Vincent [1 ]
Li, Wei [2 ]
Cheong, Hyunmin [2 ]
Iorio, Francesco [2 ]
Quimper, Claude-Guy [1 ]
机构
[1] Univ Laval, Quebec City, PQ, Canada
[2] Autodesk Res, Toronto, ON, Canada
来源
PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING, CP 2016 | 2016年 / 9892卷
关键词
SOLVER;
D O I
10.1007/978-3-319-44953-1_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We show how four-bar linkages can be designed using nonconvex optimization techniques. Our generative design software takes as input a curve that needs to be reproduced by a four-bar linkage and outputs the best assembly that approximates this curve. We model the problem using quadratic constraints and show how redundant constraints help to solve the problem. We also provide an algorithm that samples the curve based on its characteristics. Experiments show that our software is faster and more precise than existing systems. The current work is part of a larger generative design initiative at Autodesk Research.
引用
收藏
页码:618 / 635
页数:18
相关论文
共 25 条
[1]   Performance of EAs for four-bar linkage synthesis [J].
Acharyya, S. K. ;
Mandal, M. .
MECHANISM AND MACHINE THEORY, 2009, 44 (09) :1784-1794
[2]   SCIP: solving constraint integer programs [J].
Achterberg, Tobias .
MATHEMATICAL PROGRAMMING COMPUTATION, 2009, 1 (01) :1-41
[3]  
[Anonymous], IBM IL CPLEX OPT STU
[4]  
[Anonymous], 2013, ACM Transactions on Graphics TOG, DOI [10.1145/2461912.2461953, DOI 10.1145/2461912.2461953]
[5]  
[Anonymous], ALPHABB GLOBAL OPTIM
[6]  
[Anonymous], ASME 2015 IDETC CIE
[7]   Branching and bounds tightening techniques for non-convex MINLP [J].
Belotti, Pietro ;
Lee, Jon ;
Liberti, Leo ;
Margot, Francois ;
Waechter, Andreas .
OPTIMIZATION METHODS & SOFTWARE, 2009, 24 (4-5) :597-634
[8]  
Bulatovic R., 2004, Theoret. Appl. Mech., V31, P265
[9]   Optimal synthesis of mechanisms with genetic algorithms [J].
Cabrera, JA ;
Simon, A ;
Prado, M .
MECHANISM AND MACHINE THEORY, 2002, 37 (10) :1165-1177
[10]  
Dijksman E.A., 1976, MOTION GEOMETRY MECH