The distribution function of dark matter in massive haloes

被引:76
作者
Wojtak, Radoslaw [1 ]
Lokas, Ewa L. [1 ]
Mamon, Gary A. [2 ,3 ]
Gottloeber, Stefan [4 ]
Klypin, Anatoly [5 ]
Hoffman, Yehuda [6 ]
机构
[1] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland
[2] Univ Paris 06, CNRS, Inst Astrophys, UMR 7095, F-75014 Paris, France
[3] Univ Paris 07, CNRS, Observ Paris, GEPI,UMR 8111, F-92195 Meudon, France
[4] Inst Astrophys, D-14482 Potsdam, Germany
[5] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA
[6] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
关键词
methods : analytical; methods : N-body simulations; galaxies : clusters : general; galaxies : kinematics and dynamics; dark matter;
D O I
10.1111/j.1365-2966.2008.13441.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the distribution function (DF) of dark matter particles in haloes of mass range 10(14) -10(15) M-circle dot. In the numerical part of this work we measure the DF for a sample of relaxed haloes formed in the simulation of a standard Lambda cold dark matter (Lambda CDM) model. The DF is expressed as a function of energy E and the absolute value of the angular momentum L, a form suitable for comparison with theoretical models. By proper scalingwe obtain the results that do not depend on the virial mass of the haloes. We demonstrate that the DF can be separated into energy and angular momentum components and propose a phenomenological model of the DF in the form f(E)(E)[1+ L-2/(2L(0)(2))](-beta infinity+beta infinity) L-2 beta 0. This formulation involves three parameters describing the anisotropy profile in terms of its asymptotic values (beta(0) and beta(infinity)) and the scale of transition between them (L-0). The energy part f(E)(E) is obtained via inversion of the integral for spatial density. We provide a straightforward numerical scheme for this procedure as well as a simple analytical approximation for a typical halo formed in the simulation. The DF model is extensively compared with the simulations: using the model parameters obtained from fitting the anisotropy profile, we recover the DF from the simulation as well as the profiles of the dispersion and kurtosis of radial and tangential velocities. Finally, we show that our DF model reproduces the power-law behaviour of phase-space density Q = rho(r)/sigma(3)(r).
引用
收藏
页码:815 / 828
页数:14
相关论文
共 48 条
[1]   Galaxy models with tangentially anisotropic velocity distributions [J].
An, JH ;
Evans, NW .
ASTRONOMICAL JOURNAL, 2006, 131 (02) :782-789
[2]   A cusp slope - central anisotropy theorem [J].
An, Jin H. ;
Evans, N. Wyn .
ASTROPHYSICAL JOURNAL, 2006, 642 (02) :752-758
[3]  
Ascasibar Y, 2005, MON NOT R ASTRON SOC, V356, P872, DOI 10.1111/j.1365-2966.2004.08480-x
[4]   Dynamical models with a general anisotropy profile [J].
Baes, M. ;
Van Hese, E. .
ASTRONOMY & ASTROPHYSICS, 2007, 471 (02) :419-U24
[5]   THE PHASE-SPACE STRUCTURE OF R1/4 GALAXIES - ARE THESE GALAXIES ISOTHERMAL AFTER ALL [J].
BINNEY, J .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1982, 200 (03) :951-964
[6]  
Binney J., 2008, Galactic Dynamics, V2nd ed.
[7]   The structure of dark matter haloes in hierarchical clustering models [J].
Cole, S ;
Lacey, C .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1996, 281 (02) :716-736
[8]   Velocity bias in a Λ cold dark matter model [J].
Colín, P ;
Klypin, AA ;
Kravtsov, AV .
ASTROPHYSICAL JOURNAL, 2000, 539 (02) :561-569
[9]   SPHERICAL GALAXIAN DISTRIBUTION-FUNCTIONS WITH ADJUSTABLE ANISOTROPY [J].
CUDDEFORD, P ;
LOUIS, P .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1995, 275 (04) :1017-1027
[10]   AN ANALYTIC INVERSION FOR ANISOTROPIC SPHERICAL GALAXIES [J].
CUDDEFORD, P .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1991, 253 (03) :414-426