Discrete nonlocal nonlinear Schrodinger systems: Integrability, inverse scattering and solitons

被引:42
作者
Ablowitz, Mark J. [1 ]
Luo, Xu-Dan [2 ]
Musslimani, Ziad H. [3 ]
机构
[1] Univ Colorado, Dept Appl Math, Campus Box 526, Boulder, CO 80309 USA
[2] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
[3] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
关键词
inverse scattering transform; integrable systems; discrete nonlinear Schrodinger; integrable nonlocal reductions; BOUNDARY-VALUE-PROBLEMS; TRANSFORM; EQUATION; MAPPINGS; DYNAMICS; VERSIONS; PHYSICS;
D O I
10.1088/1361-6544/ab74ae
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A number of integrable nonlocal discrete nonlinear Schrodinger (NLS) type systems have been recently proposed. They arise from integrable symmetry reductions of the well-known Ablowitz-Ladik scattering problem. The equations include: the classical integrable discrete NLS equation, integrable nonlocal: PT symmetric, reverse space time (RST), and the reverse time (RT) discrete NLS equations. Their mathematical structure is particularly rich. The inverse scattering transforms (IST) for the nonlocal discrete PT symmetric NLS corresponding to decaying boundary conditions was outlined earlier. In this paper, a detailed study of the IST applied to the PT symmetric, RST and RT integrable discrete NLS equations is carried out for rapidly decaying boundary conditions. This includes the direct and inverse scattering problem, symmetries of the eigenfunctions and scattering data. The general linearization method is based on a discrete nonlocal Riemann-Hilbert approach. For each discrete nonlocal NLS equation, an explicit one soliton solution is provided. Interestingly, certain one soliton solutions of the discrete PT symmetric NLS equation satisfy nonlocal discrete analogs of discrete elliptic function/Painleve-type equations.
引用
收藏
页码:3653 / 3707
页数:55
相关论文
共 50 条
[31]   Nondegenerate Bright Solitons in Coupled Nonlinear Schrodinger Systems: Recent Developments on Optical Vector Solitons [J].
Stalin, S. ;
Ramakrishnan, R. ;
Lakshmanan, M. .
PHOTONICS, 2021, 8 (07)
[32]   Colliding Solitons for the Nonlinear Schrodinger Equation [J].
Abou Salem, W. K. ;
Froehlich, J. ;
Sigal, I. M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 291 (01) :151-176
[33]   Nonlocal Solitons in a Nonlinear Chain of Atoms [J].
Gadzhimuradov, T. A. ;
Agalarov, A. M. .
PHYSICS OF THE SOLID STATE, 2020, 62 (06) :982-987
[34]   On a coupled nonlocal nonlinear Schrodinger system [J].
Ji, Jia-Liang ;
Kai, Yue ;
Xu, Zong-Wei ;
Ma, Li-Yuan .
CHAOS SOLITONS & FRACTALS, 2022, 164
[35]   On a coupled nonlocal nonlinear Schrodinger system [J].
Jia-Liang Ji ;
Yue Kai ;
Zong-Wei Xu ;
Li-Yuan Ma .
CHAOS SOLITONS & FRACTALS, 2022, 164
[36]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[37]   Lagrangian nonlocal nonlinear Schrodinger equations [J].
Velasco-Juan, M. ;
Fujioka, J. .
CHAOS SOLITONS & FRACTALS, 2022, 156
[38]   Vector solitons in coupled nonlinear Schrodinger equations with spatial stimulated scattering and inhomogeneous dispersion [J].
Gromov, E. M. ;
Malomed, B. A. ;
Tyutin, V. V. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 54 :13-20
[39]   Solitons in an Extended Nonlinear Schrodinger Equation with Pseudo Stimulated Scattering and Inhomogeneous Cubic Nonlinearity [J].
Aseeva, N. V. ;
Gromov, E. M. ;
Tyutin, V. V. .
RADIOPHYSICS AND QUANTUM ELECTRONICS, 2015, 58 (03) :209-215
[40]   Nonlocal Cubic-Quintic Nonlinear Schrodinger Equation: Symmetry Breaking Solitons and Its Trajectory Rotation [J].
Sakthivinayagam, P. .
PHYSICS OF WAVE PHENOMENA, 2022, 30 (06) :387-396