Discrete nonlocal nonlinear Schrodinger systems: Integrability, inverse scattering and solitons

被引:40
|
作者
Ablowitz, Mark J. [1 ]
Luo, Xu-Dan [2 ]
Musslimani, Ziad H. [3 ]
机构
[1] Univ Colorado, Dept Appl Math, Campus Box 526, Boulder, CO 80309 USA
[2] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
[3] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
关键词
inverse scattering transform; integrable systems; discrete nonlinear Schrodinger; integrable nonlocal reductions; BOUNDARY-VALUE-PROBLEMS; TRANSFORM; EQUATION; MAPPINGS; DYNAMICS; VERSIONS; PHYSICS;
D O I
10.1088/1361-6544/ab74ae
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A number of integrable nonlocal discrete nonlinear Schrodinger (NLS) type systems have been recently proposed. They arise from integrable symmetry reductions of the well-known Ablowitz-Ladik scattering problem. The equations include: the classical integrable discrete NLS equation, integrable nonlocal: PT symmetric, reverse space time (RST), and the reverse time (RT) discrete NLS equations. Their mathematical structure is particularly rich. The inverse scattering transforms (IST) for the nonlocal discrete PT symmetric NLS corresponding to decaying boundary conditions was outlined earlier. In this paper, a detailed study of the IST applied to the PT symmetric, RST and RT integrable discrete NLS equations is carried out for rapidly decaying boundary conditions. This includes the direct and inverse scattering problem, symmetries of the eigenfunctions and scattering data. The general linearization method is based on a discrete nonlocal Riemann-Hilbert approach. For each discrete nonlocal NLS equation, an explicit one soliton solution is provided. Interestingly, certain one soliton solutions of the discrete PT symmetric NLS equation satisfy nonlocal discrete analogs of discrete elliptic function/Painleve-type equations.
引用
收藏
页码:3653 / 3707
页数:55
相关论文
共 50 条
  • [1] Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    NONLINEARITY, 2016, 29 (03) : 915 - 946
  • [2] Inverse scattering transform for a nonlocal derivative nonlinear Schrodinger equation
    Ma, Xinxin
    Kuang, Yonghui
    THEORETICAL AND MATHEMATICAL PHYSICS, 2022, 210 (01) : 31 - 45
  • [3] Complete integrability of nonlocal nonlinear Schrodinger equation
    Gerdjikov, V. S.
    Saxena, A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (01)
  • [4] On the integrability of the discrete nonlinear Schrodinger equation
    Levi, D.
    Petrera, M.
    Scimiterna, C.
    EPL, 2008, 84 (01)
  • [5] Inverse Scattering Transform and Solitons for Square Matrix Nonlinear Schrodinger Equations
    Prinari, Barbara
    Ortiz, Alyssa K.
    van der Mee, Cornelis
    Grabowski, Marek
    STUDIES IN APPLIED MATHEMATICS, 2018, 141 (03) : 308 - 352
  • [6] Inverse scattering for nonlocal reverse-time nonlinear Schrodinger equations
    Ma, Wen-Xiu
    APPLIED MATHEMATICS LETTERS, 2020, 102
  • [7] Scattering of Discrete Solitons from an Impurity in the Saturable Nonlinear Schrodinger Equation
    Tsoplefack, J.
    Palmero, F.
    Provata, A.
    Frantzeskakis, D. J.
    Cuevas-Maraver, J.
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [8] Peregrine solitons and gradient catastrophes in discrete nonlinear Schrodinger systems
    Hoffmann, C.
    Charalampidis, E. G.
    Frantzeskakis, D. J.
    Kevrekidis, P. G.
    PHYSICS LETTERS A, 2018, 382 (42-43) : 3064 - 3070
  • [9] On the integrability of a new discrete nonlinear Schrodinger equation
    Levi, D
    Yamilov, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (41): : L553 - L562
  • [10] Discrete nonlocal nonlinear Schrodinger equation on graphs: Dynamics of PT-symmetric solitons in discrete networks
    Akramov, M.
    Khashimova, F.
    Matrasulov, D.
    PHYSICS LETTERS A, 2023, 457