Spatial Intensity Distribution in Plasmonic Particle Array Lasers

被引:9
作者
Guo, Ke [1 ]
Koenderink, A. Femius [1 ]
机构
[1] AMOLF, Ctr Nanophoton, Sci Pk 104, NL-1098 XG Amsterdam, Netherlands
关键词
COUPLED-WAVE THEORY; STIMULATED-EMISSION; DIFFRACTION; CONVERGENCE; RADIATION;
D O I
10.1103/PhysRevApplied.11.024025
中图分类号
O59 [应用物理学];
学科分类号
摘要
We study spatial intensity distributions in plasmonic distributed feedback lasers (DFB) composed of metal nanoparticle arrays. Real-space distributions give direct access to "coupling-strength" parameters that quantify DFB performance in the framework of coupled-wave theory (CWT). We observe that CWT indeed parametrizes real-space intensity distributions and extract coupling-strength parameters that quantify the plasmonic feedback mechanism. These coupling-strength parameters differ from those required to parametrize the plasmonic band structures of the system, counter to the common result for dielectric DFB lasers, where CWT describes both real-space and k-space physics. Also, the measured coupling constants are significantly smaller than would be expected from estimates on the basis of the unit-cell geometry. We conclude that while CWT is successful as a generic description of any system with forward and backward waves with gain, matching this model to photonic band structures, or to common parameter-estimate approaches, fails because the underlying assumption that a perturbative plane-wave expansion applies is not valid for plasmonic antenna arrays.
引用
收藏
页数:14
相关论文
共 58 条
[1]  
[Anonymous], COMSOL MULT VERS 5 2
[2]  
[Anonymous], 1945, Theory of x-ray diffraction in crystals
[3]   Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems [J].
Bergman, DJ ;
Stockman, MI .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4
[4]   Ultrafast Pulse Generation in an Organic Nanoparticle-Array Laser [J].
Daskalakis, Konstantinos S. ;
Vakevainen, Aaro I. ;
Martikainen, Jani-Petri ;
Hakala, Tommi K. ;
Torma, Paivi .
NANO LETTERS, 2018, 18 (04) :2658-2665
[5]   Anomalous spectral scaling of light emission rates in low-dimensional metallic nanostructures [J].
Genov, D. A. ;
Oulton, R. F. ;
Bartal, G. ;
Zhang, X. .
PHYSICAL REVIEW B, 2011, 83 (24)
[6]   Directional lasing in resonant semiconductor nanoantenna arrays [J].
Ha, Son Tung ;
Fu, Yuan Hsing ;
Emani, Naresh Kumar ;
Pan, Zhenying ;
Bakker, Reuben M. ;
Paniagua-Dominguez, Ramon ;
Kuznetsov, Arseniy, I .
NATURE NANOTECHNOLOGY, 2018, 13 (11) :1042-+
[7]   Lasing in dark and bright modes of a finite-sized plasmonic lattice [J].
Hakala, T. K. ;
Rekola, H. T. ;
Vakevainen, A. I. ;
Martikainen, J. -P. ;
Necada, M. ;
Moilanen, A. J. ;
Torma, P. .
NATURE COMMUNICATIONS, 2017, 8
[8]   Bose-Einstein condensation in a plasmonic lattice [J].
Hakala, Tommi K. ;
Moilanen, Antti J. ;
Vakevainen, Aaro I. ;
Guo, Rui ;
Martikainen, Jani-Petri ;
Daskalakis, Konstantinos S. ;
Rekola, Heikki T. ;
Julku, Aleksi ;
Torma, Paivi .
NATURE PHYSICS, 2018, 14 (07) :739-+
[9]   Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback [J].
Heliotis, G ;
Xia, RD ;
Turnbull, GA ;
Andrew, P ;
Barnes, WL ;
Samuel, IDW ;
Bradley, DDC .
ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (01) :91-97
[10]   Lasing in metallic- Coated nanocavities [J].
Hill, Martin T. ;
Oei, Yok-Siang ;
Smalbrugge, Barry ;
Zhu, Youcai ;
De Vries, Tjibbe ;
Van Veldhoven, Peter J. ;
Van Otten, Frank W. M. ;
Eijkemans, Tom J. ;
Turkiewicz, Jaroslaw P. ;
De Waardt, Huug ;
Geluk, Erik Jan ;
Kwon, Soon-Hong ;
Lee, Yong-Hee ;
Notzel, Richard ;
Smit, Meint K. .
NATURE PHOTONICS, 2007, 1 (10) :589-594