Equations in finite fields with restricted solution sets.: II (Algebraic equations)

被引:19
作者
Gyarmati, K. [1 ]
Sarkoezy, A. [2 ]
机构
[1] Alfred Renyi Inst Math, H-1053 Budapest, Hungary
[2] Eotvos Lorand Univ, Dept Algebra & Number Theory, H-1117 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
finite field; equation; character sum;
D O I
10.1007/s10474-007-7035-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Generalizing earlier results, it is shown that if A, B, C, D are "large" subsets of a finite field F-q, then the equations a + b = cd, resp. ab + 1 = cd can be solved with a is an element of A, b is an element of B, c is an element of C,d is an element of D. Other algebraic equations with solutions restricted to "large" subsets of F-q are also studied. The proofs are based on character sum estimates proved in Part I of the paper.
引用
收藏
页码:259 / 280
页数:22
相关论文
共 8 条
[1]  
DARTYGE C, UNPUB LARGE FAMILIES
[2]   On a problem of Diophantus [J].
Gyarmati, K .
ACTA ARITHMETICA, 2001, 97 (01) :53-65
[3]  
GYARMATI K, UNPUB ACTA MATH HUNG
[4]   On sums and products of residues modulo p [J].
Sárközy, A .
ACTA ARITHMETICA, 2005, 118 (04) :403-409
[5]  
SARKOZY A, IN PRESS INTEGERS EJ
[6]  
Schur I., 1916, Jahresber. Dtsch. Math.-Ver., V25, P114
[7]  
Weil A., 1948, ACTUAL SCI IND, V7
[8]   Some estimates for character sums and applications [J].
Winterhof, A .
DESIGNS CODES AND CRYPTOGRAPHY, 2001, 22 (02) :123-131