Neighbourhoods of independent sets for (a, b, k)-critical graphs

被引:14
作者
Zhou, Sizhong [1 ]
Xu, Yang [2 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Math & Phys, Zhenjiang 212003, Jiangsu, Peoples R China
[2] Qingdao Agr Univ, Dept Math, Qingdao 266109, Shandong, Peoples R China
关键词
graph; minimum degree; neighbourhood; a; b]-factor; (a; b; k)-critical graph;
D O I
10.1017/S0004972708000270
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph of order n. Let a, b and k be nonnegative integers such that 1 <= a <= b. A graph G is called an (a, b, k)-critical graph if after deleting any k vertices of G the remaining graph of G has an [a, b]-factor. We provide a sufficient condition for a graph to be (a, b, k)-critical that extends a well-known sufficient condition for the existence of a k-factor.
引用
收藏
页码:277 / 283
页数:7
相关论文
共 10 条
[1]  
Bondy J.A., 2008, GRAD TEXTS MATH
[2]  
Favaron O., 1996, Discuss. Math. Graph Theory, V16, P41, DOI DOI 10.7151/DMGT.1022
[3]  
[Li Jianxiang 李建湘], 2004, [应用数学, Mathematics Applicata], V17, P450
[4]   A new degree condition for graphs to have [a, b]-factor [J].
Li, JX .
DISCRETE MATHEMATICS, 2005, 290 (01) :99-103
[5]  
Liu G., 1999, CONGR NUMER, V139, P77
[6]  
Liu G., 1998, ADV MATH, V27, P536
[7]  
WOODALL DR, 1990, J LOND MATH SOC, V41, P385
[8]  
ZHOU S, ARS COMBIN IN PRESS
[9]   Notes on the binding numbers for (a,b,k)-critical graphs [J].
Zhou, Sizhong ;
Jiang, Jiashang .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 76 (02) :307-314
[10]   Some sufficient conditions for graphs to have (g,f)-factors [J].
Zhou, Sizhong .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 75 (03) :447-452