Choosability conjectures and multicircuits

被引:37
作者
Kostochka, AV
Woodall, DR
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[2] Russian Acad Sci, Inst Math, Novosibirsk 630090, Russia
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
英国工程与自然科学研究理事会;
关键词
graph colouring; list-colouring conjecture; list-edge-colouring conjecture; list-total-colouring conjecture; list-square-colouring conjecture; choosability conjectures; total choosability; list chromatic number; list total chromatic number; inflation of a graph; square of a graph; multicircuit;
D O I
10.1016/S0012-365X(00)00371-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper starts with a discussion of several old and new conjectures about choosability in graphs. In particular, the list-colouring conjecture, that ch ' = X ' for every multigraph, is shown to imply that if a line graph is (a : b)-choosable, then it is (ta : tb)-choosable for every positive integer t. It is proved that ch(H-2) = X(H-2) for many "small" graphs H, including inflations of all circuits (connected 2-regular graphs) with length at most 11 except possibly length 9; and that ch " (C) = X " (C) (the total chromatic number) for various multicircuits C, mainly of even order, where a multicircuit is a multigraph whose underlying simple graph is a circuit. In consequence, it is shown that if any of the corresponding graphs H-2 or T(C) is (a: b)-choosable, then it is (ta: tb)-choosable for every positive integer t. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:123 / 143
页数:21
相关论文
共 11 条
[1]   List edge and list total colourings of multigraphs [J].
Borodin, OV ;
Kostochka, AV ;
Woodall, DR .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 71 (02) :184-204
[2]  
Erd o P., 1979, Congr. Numer., V26, P125
[3]   THE LIST CHROMATIC INDEX OF A BIPARTITE MULTIGRAPH [J].
GALVIN, F .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 63 (01) :153-158
[4]   SOME UPPER-BOUNDS ON THE TOTAL AND LIST CHROMATIC-NUMBERS OF MULTIGRAPHS [J].
HAGGKVIST, R ;
CHETWYND, A .
JOURNAL OF GRAPH THEORY, 1992, 16 (05) :503-516
[5]  
Jensen T. R., 1995, Graph Coloring Problems
[6]  
KOSTOCHKA AV, 1999, UNPUB J GRAPH TH OCT
[7]  
KOSTOCHKA AV, 2000, J GRAPH THEORY JUN
[8]  
MILBER EC, 1974, CAN J MATH, V26, P948
[9]   Edge-choosability in line-perfect multigraphs [J].
Peterson, D ;
Woodall, DR .
DISCRETE MATHEMATICS, 1999, 202 (1-3) :191-199
[10]  
Vizing V. G., 1965, Diskret. Analiz, V5, P9