Multifunctional graphene incorporated polyacrylamide conducting gel electrolytes for efficient quasi-solid-state quantum dot-sensitized solar cells

被引:35
作者
Duan, Jialong [1 ,2 ]
Tang, Qunwei [1 ,2 ]
Li, Ru [1 ]
He, Benlin [2 ]
Yu, Liangmin [1 ,3 ]
Yang, Peizhi [4 ]
机构
[1] Ocean Univ China, Minist Educ, Key Lab Marine Chem Theory & Technol, Qingdao 266100, Peoples R China
[2] Ocean Univ China, Inst Mat Sci & Engn, Qingdao 266100, Peoples R China
[3] Ocean Univ China, Qingdao Collaborat Innovat Ctr Marine Sci & Techn, Qingdao 266100, Peoples R China
[4] Yunnan Normal Univ, Minist Educ, Key Lab Adv Tech & Preparat Renewable Energy Mat, Kunming 650092, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasi-solid-state quantum dot-sensitized solar cell; Conducting gel electrolyte; Polyacrylamide; Graphene; Hydrogel; COUNTER ELECTRODES; NANOCRYSTALS; COMPOSITE; PHOTOVOLTAICS; CDSE;
D O I
10.1016/j.jpowsour.2015.03.060
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pursuit of a high efficiency and stability has been a persistent objective for quantum dot-sensitized solar cells (QDSCs). Here we launch a strategy of synthesizing graphene implanted polyacrylamide (PAAm-G) conducting gel electrolytes for quasi-solid-state QDSCs. With an aim of elevating the dosage of S2-/S(x)(2-)credox couples and therefore charge-transfer ability, both osmotic press across the PAAm-G and capillary force within the three-dimensional micropores are utilized as driving forces. A promising power conversion efficiency of 234% is recorded for the QDSCs by optimizing graphene dosage in the conducting gel electrolyte. The enhanced conversion efficiency of solar cell is attributed to the expanded catalytic area from counter electrolyte/electrolyte interface to both interface and the conducting gel electrolyte. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:369 / 376
页数:8
相关论文
共 34 条
  • [1] Multiple Exciton Generation in Semiconductor Quantum Dots
    Beard, Matthew C.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (11): : 1282 - 1288
  • [2] Efficient iron sulfide counter electrode for quantum dots-sensitized solar cells
    Chen, Haining
    Zhu, Liqun
    Liu, Huicong
    Li, Weiping
    [J]. JOURNAL OF POWER SOURCES, 2014, 245 : 406 - 410
  • [3] New fabrication process of long-life dye-sensitized solar cells by in situ gelation of quasi-solid polymer electrolytes
    Chen, Kuei-Fu
    Liu, Chien-Hung
    Hsieh, Chien-Kuo
    Lin, Cian-Li
    Huang, Hsin-Kai
    Tsai, Chuen-Horng
    Chen, Fu-Rong
    [J]. JOURNAL OF POWER SOURCES, 2014, 247 : 939 - 946
  • [4] Duan J.L, 2014, ELECTROCHIM ACTA, V137, P175
  • [5] Solid-state electrolytes from polysulfide integrated polyvinylpyrrolidone for quantum dot-sensitized solar cells
    Duan, Jialong
    Tang, Qunwei
    Sun, Yanna
    He, Benlin
    Chen, Haiyan
    [J]. RSC ADVANCES, 2014, 4 (105): : 60478 - 60483
  • [6] Enhanced dye illumination in dye-sensitized solar cells using TiO2/GeO2 photo-anodes
    Duan, Yanyan
    Tang, Qunwei
    Chen, Zihan
    He, Benlin
    Chen, Haiyan
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (31) : 12459 - 12465
  • [7] INFLUENCE OF CO-POLYMER COMPOSITION ON NON-FICKIAN WATER TRANSPORT THROUGH GLASSY CO-POLYMERS
    FRANSON, NM
    PEPPAS, NA
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 1983, 28 (04) : 1299 - 1310
  • [8] Carrier Generation and Collection in CdS/CdSe-Sensitized SnO2 Solar Cells Exhibiting Unprecedented Photocurrent Densities
    Hossain, Md Anower
    Jennings, James Robert
    Koh, Zhen Yu
    Wang, Qing
    [J]. ACS NANO, 2011, 5 (04) : 3172 - 3181
  • [9] The best of both worlds
    Jabbour, Ghassan E.
    Doderer, David
    [J]. NATURE PHOTONICS, 2010, 4 (09) : 604 - 605
  • [10] Beyond Photovoltaics: Semiconductor Nanoarchitectures for Liquid-Junction Solar Cells
    Kamat, Prashant V.
    Tvrdy, Kevin
    Baker, David R.
    Radich, James G.
    [J]. CHEMICAL REVIEWS, 2010, 110 (11) : 6664 - 6688