Scattering of solitons in the derivative nonlinear Schrodinger model

被引:19
|
作者
Min, H
Park, QH
机构
[1] KYUNGHEE UNIV, DEPT PHYS, SEOUL 130701, SOUTH KOREA
[2] KYUNGHEE UNIV, RES INST BASIC SCI, SEOUL 130701, SOUTH KOREA
关键词
D O I
10.1016/S0370-2693(96)01184-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that the chiral soliton model recently introduced by Aglietti et al. can be made integrable by adding an attractive potential with a fixed coefficient. The modified model is equivalent to the derivative nonlinear Schrodinger model which does not possess parity and Galilean invariance. We obtain explicit one and two classical soliton solutions and show that in the weak coupling limit, they correctly reproduce the bound state energy as well as the time delay of two-body quantum mechanics of the model.
引用
收藏
页码:621 / 625
页数:5
相关论文
共 50 条
  • [31] Rogue wave modes for a derivative nonlinear Schrodinger model
    Chan, Hiu Ning
    Chow, Kwok Wing
    Kedziora, David Jacob
    Grimshaw, Roger Hamilton James
    Ding, Edwin
    PHYSICAL REVIEW E, 2014, 89 (03)
  • [32] Generation of solitons by a boxlike pulse in the derivative nonlinear Schrodinger equation with nonvanishing boundary conditions
    Lashkin, VM
    PHYSICAL REVIEW E, 2005, 71 (06):
  • [33] Global existence for the derivative nonlinear Schrodinger equation by the method of inverse scattering
    Liu, Jiaqi
    Perry, Peter A.
    Sulem, Catherine
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2016, 41 (11) : 1692 - 1760
  • [34] NONLINEAR SCHRODINGER SOLITONS IN A PERIODIC STRUCTURE
    SIPE, JE
    WINFUL, HG
    OPTICS LETTERS, 1988, 13 (02) : 132 - 133
  • [35] Gaussian solitons in nonlinear Schrodinger equation
    Nassar, AB
    Bassalo, JMF
    Alencar, PTS
    de Souza, JF
    de Oliveira, JE
    Cattani, M
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2002, 117 (08): : 941 - 946
  • [36] Solitons of the generalized nonlinear Schrodinger equation
    Tsoy, Eduard N.
    Suyunov, Laziz A.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 414
  • [37] Bragg solitons and the nonlinear Schrodinger equation
    de Sterke, CM
    Eggleton, BJ
    PHYSICAL REVIEW E, 1999, 59 (01) : 1267 - 1269
  • [38] Colliding Solitons for the Nonlinear Schrodinger Equation
    Abou Salem, W. K.
    Froehlich, J.
    Sigal, I. M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 291 (01) : 151 - 176
  • [39] On the Dynamics of Solitons in the Nonlinear Schrodinger Equation
    Benci, Vieri
    Ghimenti, Marco
    Micheletti, Anna Maria
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (02) : 467 - 492
  • [40] Dynamical stabilization of solitons in cubic-quintic nonlinear Schrodinger model
    Abdullaev, FK
    Garnier, J
    PHYSICAL REVIEW E, 2005, 72 (03):