Scattering of solitons in the derivative nonlinear Schrodinger model

被引:19
|
作者
Min, H
Park, QH
机构
[1] KYUNGHEE UNIV, DEPT PHYS, SEOUL 130701, SOUTH KOREA
[2] KYUNGHEE UNIV, RES INST BASIC SCI, SEOUL 130701, SOUTH KOREA
关键词
D O I
10.1016/S0370-2693(96)01184-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that the chiral soliton model recently introduced by Aglietti et al. can be made integrable by adding an attractive potential with a fixed coefficient. The modified model is equivalent to the derivative nonlinear Schrodinger model which does not possess parity and Galilean invariance. We obtain explicit one and two classical soliton solutions and show that in the weak coupling limit, they correctly reproduce the bound state energy as well as the time delay of two-body quantum mechanics of the model.
引用
收藏
页码:621 / 625
页数:5
相关论文
共 50 条
  • [21] Alfven solitons in the coupled derivative nonlinear Schrodinger system with symbolic computation
    Xu, Tao
    Tian, Bo
    Zhang, Cheng
    Meng, Xiang-Hua
    Lue, Xing
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (41)
  • [22] Construction of multi-solitons and multi kink-solitons of derivative nonlinear Schrodinger equations
    Phan Van Tin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 221
  • [23] Invariants in a resonant derivative nonlinear Schrodinger model
    Rogers, Colin
    Malomed, Boris
    Chow, K. W.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (15)
  • [24] The truncation model of the derivative nonlinear Schrodinger equation
    Sanchez-Arriaga, G.
    Hada, T.
    Nariyuki, Y.
    PHYSICS OF PLASMAS, 2009, 16 (04)
  • [25] Scattering of Discrete Solitons from an Impurity in the Saturable Nonlinear Schrodinger Equation
    Tsoplefack, J.
    Palmero, F.
    Provata, A.
    Frantzeskakis, D. J.
    Cuevas-Maraver, J.
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [26] Discrete nonlocal nonlinear Schrodinger systems: Integrability, inverse scattering and solitons
    Ablowitz, Mark J.
    Luo, Xu-Dan
    Musslimani, Ziad H.
    NONLINEARITY, 2020, 33 (07) : 3653 - 3707
  • [27] Inverse Scattering Transform and Solitons for Square Matrix Nonlinear Schrodinger Equations
    Prinari, Barbara
    Ortiz, Alyssa K.
    van der Mee, Cornelis
    Grabowski, Marek
    STUDIES IN APPLIED MATHEMATICS, 2018, 141 (03) : 308 - 352
  • [28] Stability of Algebraic Solitons for Nonlinear Schrodinger Equations of Derivative Type: Variational Approach
    Hayashi, Masayuki
    ANNALES HENRI POINCARE, 2022, 23 (12): : 4249 - 4277
  • [29] Inverse scattering transform for a nonlocal derivative nonlinear Schrodinger equation
    Ma, Xinxin
    Kuang, Yonghui
    THEORETICAL AND MATHEMATICAL PHYSICS, 2022, 210 (01) : 31 - 45
  • [30] Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrodinger equations
    Geng, Kai-Li
    Mou, Da-Sheng
    Dai, Chao-Qing
    NONLINEAR DYNAMICS, 2023, 111 (01) : 603 - 617