DOUBLE HOPF BIFURCATION IN NONLOCAL REACTION-DIFFUSION SYSTEMS WITH SPATIAL AVERAGE KERNEL

被引:6
作者
Shen, Z. U. O. L. I. N. [1 ]
Liu, Y. A. N. G. [1 ]
Wei, J. U. N. J. I. E. [2 ]
机构
[1] Harbin Univ Sci & Technol, Dept Basic Educ, Weihai 264300, Shandong, Peoples R China
[2] Harbin Inst Technol, Dept Math, Weihai 264209, Shandong, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2022年
基金
中国国家自然科学基金;
关键词
  Reaction-diffusion system; double Hopf bifurcation; nonlocal effect; normal forms; FUNCTIONAL-DIFFERENTIAL EQUATIONS; VOLTERRA TYPE SYSTEM; FISHER-KPP EQUATION; SPATIOTEMPORAL DYNAMICS; NORMAL FORMS; WAVE-FRONTS; PATTERN-FORMATION; GLOBAL STABILITY; POPULATION-MODEL; TRAVELING-WAVES;
D O I
10.3934/dcdsb.2022176
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a general reaction-diffusion system with nonlocal effects and Neumann boundary conditions, where a spatial average kernel is chosen to be the nonlocal kernel. By virtue of the center manifold reduction technique and normal form theory, we present a new algorithm for computing normal forms associated with the codimension-two double Hopf bifurcation. The theoretical results are applied to a predator-prey model, and complex dynamic behaviors such as spatially nonhomogeneous periodic oscillations and spatially nonhomogeneous quasi-periodic oscillations could occur.
引用
收藏
页码:2424 / 2462
页数:39
相关论文
共 63 条
[1]   SPATIOTEMPORAL ATTRACTORS GENERATED BY THE TURING-HOPF BIFURCATION IN A TIME-DELAYED REACTION-DIFFUSION SYSTEM [J].
An, Qi ;
Jiang, Weihua .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (02) :487-510
[2]   Prey-predator model with a nonlocal consumption of prey [J].
Banerjee, M. ;
Volpert, V. .
CHAOS, 2016, 26 (08)
[3]   Spatio-temporal pattern formation in Rosenzweig-MacArthur model: Effect of nonlocal interactions [J].
Banerjee, Malay ;
Volpert, Vitaly .
ECOLOGICAL COMPLEXITY, 2017, 30 :2-10
[4]   Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations [J].
Baurmann, Martin ;
Gross, Thilo ;
Feudel, Ulrike .
JOURNAL OF THEORETICAL BIOLOGY, 2007, 245 (02) :220-229
[5]   The non-local Fisher-KPP equation: travelling waves and steady states [J].
Berestycki, Henri ;
Nadin, Gregoire ;
Perthame, Benoit ;
Ryzhik, Lenya .
NONLINEARITY, 2009, 22 (12) :2813-2844
[6]   Dynamics of a strongly nonlocal reaction-diffusion population model [J].
Billingham, J .
NONLINEARITY, 2004, 17 (01) :313-346
[7]   AGGREGATION AND THE COMPETITIVE EXCLUSION-PRINCIPLE [J].
BRITTON, NF .
JOURNAL OF THEORETICAL BIOLOGY, 1989, 136 (01) :57-66
[8]   SPATIAL STRUCTURES AND PERIODIC TRAVELING WAVES IN AN INTEGRODIFFERENTIAL REACTION-DIFFUSION POPULATION-MODEL [J].
BRITTON, NF .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (06) :1663-1688
[9]   Stability and Hopf bifurcation for a population delay model with diffusion effects [J].
Busenberg, S ;
Huang, WZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 124 (01) :80-107
[10]   Spatial Nonhomogeneous Periodic Solutions Induced by Nonlocal Prey Competition in a Diffusive Predator-Prey Model [J].
Chen, Shanshan ;
Wei, Junjie ;
Yang, Kaiqi .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (04)