Enhancing the performance of Sn-C nanocomposite as lithium ion anode by discharge plasma assisted milling

被引:46
作者
Liu, Hui [1 ]
Hu, Renzong [1 ]
Zeng, Meiqin [1 ]
Liu, Jiangwen [1 ]
Zhu, Min [1 ]
机构
[1] S China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510640, Peoples R China
关键词
THIN-FILM ANODES; ELECTROCHEMICAL PERFORMANCE; NEGATIVE ELECTRODES; COMPOSITE ANODE; ALLOY ANODES; BATTERIES; GRAPHITE; INTERCALATION; DEPOSITION;
D O I
10.1039/c2jm15926k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An efficient synthesis method, namely dielectric barrier discharge plasma assisted milling (P-milling), is used for the first time to prepare Sn-C anode materials for lithium ion batteries. By short-time P-milling, a unique Sn-C nanocomposite is obtained with a microstructure of multi-scale Sn particles homogeneously dispersed in a graphite matrix. The P-milled Sn-C nanocomposite anodes exhibit much better electrochemical performance with higher reversible capacity and better cyclability in comparison with those obtained by conventional milling (C-milling). Our results demonstrate that discharge plasma assisted milling is a simple and efficient method to prepare Sn-C composite anodes on a large scale with good performance for lithium ion battery applications.
引用
收藏
页码:8022 / 8028
页数:7
相关论文
共 36 条
[21]   A new rapid synthesis technique for electrochemically active materials used in energy storage applications [J].
Needham, SA ;
Calka, A ;
Wang, GX ;
Mosbah, A ;
Liu, HK .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (03) :434-438
[22]   Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods [J].
Todd, A. D. W. ;
Ferguson, P. P. ;
Fleischauer, M. D. ;
Dahn, J. R. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2010, 34 (06) :535-555
[23]   Ageing mechanisms in lithium-ion batteries [J].
Vetter, J ;
Novák, P ;
Wagner, MR ;
Veit, C ;
Möller, KC ;
Besenhard, JO ;
Winter, M ;
Wohlfahrt-Mehrens, M ;
Vogler, C ;
Hammouche, A .
JOURNAL OF POWER SOURCES, 2005, 147 (1-2) :269-281
[24]   Lithium insertion in ball-milled graphite [J].
Wang, CS ;
Wu, GT ;
Li, WZ .
JOURNAL OF POWER SOURCES, 1998, 76 (01) :1-10
[25]   Graphite-Tin composites as anode materials for lithium-ion batteries [J].
Wang, GX ;
Ahn, JH ;
Lindsay, MJ ;
Sun, L ;
Bradhurst, DH ;
Dou, SX ;
Liu, HK .
JOURNAL OF POWER SOURCES, 2001, 97-8 :211-215
[26]   Graphitized carbon nanobeads with an onion texture as a lithium-ion battery negative electrode for high-rate use [J].
Wang, HY ;
Abe, T ;
Maruyama, S ;
Iriyama, Y ;
Ogumi, Z ;
Yoshikawa, K .
ADVANCED MATERIALS, 2005, 17 (23) :2857-+
[27]   Effect of milling on the electrochemical performance of natural graphite as an anode material for lithium-ion battery [J].
Wang, HY ;
Ikeda, T ;
Fukuda, K ;
Yoshio, M .
JOURNAL OF POWER SOURCES, 1999, 83 (1-2) :141-147
[28]   Effect of additional nickel on crystallization degree evolution of expanded graphite during ball-milling and annealing [J].
Wang, Liqin ;
Yue, Xueqing ;
Zhang, Fucheng ;
Zhang, Ruijun .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 497 (1-2) :344-348
[29]   Single-Crystal Intermetallic M-Sn (M = Fe, Cu, Co, Ni) Nanospheres as Negative Electrodes for Lithium-Ion Batteries [J].
Wang, Xiao-Liang ;
Han, Wei-Qiang ;
Chen, Jiajun ;
Graetz, Jason .
ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (05) :1548-1551
[30]   Nano-scale Cu6Sn5 anodes [J].
Wolfenstine, J ;
Campos, S ;
Foster, D ;
Read, J ;
Behl, WK .
JOURNAL OF POWER SOURCES, 2002, 109 (01) :230-233