Enhancing the performance of Sn-C nanocomposite as lithium ion anode by discharge plasma assisted milling

被引:46
作者
Liu, Hui [1 ]
Hu, Renzong [1 ]
Zeng, Meiqin [1 ]
Liu, Jiangwen [1 ]
Zhu, Min [1 ]
机构
[1] S China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510640, Peoples R China
关键词
THIN-FILM ANODES; ELECTROCHEMICAL PERFORMANCE; NEGATIVE ELECTRODES; COMPOSITE ANODE; ALLOY ANODES; BATTERIES; GRAPHITE; INTERCALATION; DEPOSITION;
D O I
10.1039/c2jm15926k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An efficient synthesis method, namely dielectric barrier discharge plasma assisted milling (P-milling), is used for the first time to prepare Sn-C anode materials for lithium ion batteries. By short-time P-milling, a unique Sn-C nanocomposite is obtained with a microstructure of multi-scale Sn particles homogeneously dispersed in a graphite matrix. The P-milled Sn-C nanocomposite anodes exhibit much better electrochemical performance with higher reversible capacity and better cyclability in comparison with those obtained by conventional milling (C-milling). Our results demonstrate that discharge plasma assisted milling is a simple and efficient method to prepare Sn-C composite anodes on a large scale with good performance for lithium ion battery applications.
引用
收藏
页码:8022 / 8028
页数:7
相关论文
共 36 条
[1]   Electrospun Carbon-Tin Oxide Composite Nanofibers for Use as Lithium Ion Battery Anodes [J].
Bonino, Christopher A. ;
Ji, Liwen ;
Lin, Zhan ;
Toprakci, Ozan ;
Zhang, Xiangwu ;
Khan, Saad A. .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (07) :2534-2542
[2]   Mechanical milling assisted by electrical discharge [J].
Calka, A ;
Wexler, D .
NATURE, 2002, 419 (6903) :147-151
[3]   A study on the interior microstructures of working Sn particle electrode of Li-ion batteries by in situ X-ray transmission microscopy [J].
Chao, Sung-Chieh ;
Yen, Yu-Chan ;
Song, Yen-Fang ;
Chen, Yi-Ming ;
Wu, Hung-Chun ;
Wu, Nae-Lih .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (02) :234-237
[4]   Electroless Cu-plated Ni3Sn4 alloy used as anode material for lithium ion battery [J].
Cheng, XQ ;
Shi, PF .
JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 391 (1-2) :241-244
[5]  
Dai L.Y., 2006, Acta Metall. Sin. Engl. Lett, V19, P411, DOI [10.1016/S1006-7191(06)62081-4, DOI 10.1016/S1006-7191(06)62081-4]
[6]   Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries [J].
Derrien, Gaelle ;
Hassoun, Jusef ;
Panero, Stefania ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2007, 19 (17) :2336-+
[7]   Nano-Sn/hard carbon composite anode material with high-initial coulombic efficiency [J].
Guo, Bingkun ;
Shu, Jie ;
Tang, Kun ;
Bai, Ying ;
Wang, Zhaoxiang ;
Chen, Liquan .
JOURNAL OF POWER SOURCES, 2008, 177 (01) :205-210
[8]   Ternary Sn-Co-CLi-ion battery electrode material prepared by high energy ball milling [J].
Hassoun, J. ;
Mulas, G. ;
Panero, S. ;
Scrosati, B. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (08) :2075-2081
[9]   Investigation of immiscible alloy system of Al-Sn thin films as anodes for lithium ion batteries [J].
Hu, R. Z. ;
Zhang, L. ;
Liu, X. ;
Zeng, M. Q. ;
Zhu, M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (07) :1109-1112
[10]   Microstructure and electrochemical properties of electron-beam deposited Sn-Cu thin film anodes for thin film lithium ion batteries [J].
Hu, R. Z. ;
Zhang, Y. ;
Zhu, M. .
ELECTROCHIMICA ACTA, 2008, 53 (08) :3377-3385