Wavefront reconstruction of a Shack-Hartmann sensor with insufficient lenslets based on an extreme learning machine

被引:21
作者
Xu, Zhiqiang [1 ,2 ,3 ]
Wang, Shuai [1 ,2 ]
Zhao, Mengmeng [1 ,2 ,3 ]
Zhao, Wang [1 ,2 ]
Dong, Lizhi [1 ,2 ]
He, Xing [1 ,2 ]
Yang, Ping [1 ,2 ]
Xu, Bing [1 ,2 ]
机构
[1] Chinese Acad Sci, Key Lab Adapt Opt, Chengdu 610209, Sichuan, Peoples R China
[2] Chinese Acad Sci, Inst Opt & Elect, Chengdu 610209, Sichuan, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
LASER;
D O I
10.1364/AO.388463
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In a standard Shack-Hartmann wavefront sensor, the number of effective lenslets is the vital parameter that limits the wavefront restoration accuracy. This paper proposes a wavefront reconstruction algorithm for a Shack-Hartmann wavefront sensor with an insufficient microlens based on an extreme learning machine. The neural network model is used to fit the nonlinear corresponding relationship between the centroid displacement and the Zernike model coefficients under a sparse microlens. Experiments with a 6 x 6 lenslet array show that the root mean square (RMS) relative error of the proposed method is only 4.36% of the initial value, which is 80.72% lower than the standard modal algorithm. (C) 2020 Optical Society of America
引用
收藏
页码:4768 / 4774
页数:7
相关论文
共 22 条
  • [1] Centroid error due to non-uniform lenslet illumination in the Shack Hartmann wavefront sensor
    Akondi, Vyas
    Steven, Samuel
    Dubra, Alfredo
    [J]. OPTICS LETTERS, 2019, 44 (17) : 4167 - 4170
  • [2] ATMOSPHERIC STRUCTURE-FUNCTION MEASUREMENTS WITH A SHACK-HARTMANN WAVE-FRONT SENSOR
    DAYTON, D
    PIERSON, B
    SPIELBUSCH, B
    GONGLEWSKI, J
    [J]. OPTICS LETTERS, 1992, 17 (24) : 1737 - 1739
  • [3] Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope
    Dubra, Alfredo
    Sulai, Yusufu
    Norris, Jennifer L.
    Cooper, Robert F.
    Dubis, Adam M.
    Williams, David R.
    Carroll, Joseph
    [J]. BIOMEDICAL OPTICS EXPRESS, 2011, 2 (07): : 1864 - 1876
  • [4] LEAST-SQUARE FITTING A WAVEFRONT DISTORTION ESTIMATE TO AN ARRAY OF PHASE-DIFFERENCE MEASUREMENTS
    FRIED, DL
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1977, 67 (03) : 370 - 375
  • [5] Wavefront reconstruction with artificial neural networks
    Guo, Hong
    Korablinova, Nina
    Ren, Qiushi
    Bille, Josef
    [J]. OPTICS EXPRESS, 2006, 14 (14): : 6456 - 6462
  • [6] Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection
    Hu, Lejia
    Hu, Shuwen
    Gong, Wei
    Si, Ke
    [J]. OPTICS EXPRESS, 2019, 27 (23): : 33504 - 33517
  • [7] Trends in extreme learning machines: A review
    Huang, Gao
    Huang, Guang-Bin
    Song, Shiji
    You, Keyou
    [J]. NEURAL NETWORKS, 2015, 61 : 32 - 48
  • [8] Extreme learning machine: Theory and applications
    Huang, Guang-Bin
    Zhu, Qin-Yu
    Siew, Chee-Kheong
    [J]. NEUROCOMPUTING, 2006, 70 (1-3) : 489 - 501
  • [9] Phase retrieval using a modified Shack-Hartmann wavefront sensor with defocus
    Li, Changwei
    Li, Bangming
    Zhang, Sijiong
    [J]. APPLIED OPTICS, 2014, 53 (04) : 618 - 624
  • [10] Wavefront sensing for a nonuniform intensity laser beam by Shack-Hartmann sensor with modified Fourier domain centroiding
    Li, Tenghao
    Huang, Lei
    Gong, Mali
    [J]. OPTICAL ENGINEERING, 2014, 53 (04)