Next-Generation Cathode Materials for Non-aqueous Potassium-Ion Batteries

被引:85
作者
Kim, Haegyeom [1 ]
Ji, Huiwen [2 ,3 ]
Wang, Jingyang [2 ]
Ceder, Gerbrand [1 ,2 ]
机构
[1] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA
基金
新加坡国家研究基金会;
关键词
PRUSSIAN WHITE ANALOGS; ELECTROCHEMICAL PROPERTIES; SUPERIOR CATHODE; HIGH-CAPACITY; BLUE ANALOGS; SODIUM; LITHIUM; INTERCALATION; ELECTRODE; 1ST-PRINCIPLES;
D O I
10.1016/j.trechm.2019.04.007
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Potassium-ion batteries have recently attracted considerable attention as cost-effective alternatives to lithium-ion batteries for large-scale energy storage. However, a major obstacle to the practical application of this emerging technology is the lack of suitable cathode materials that are capable of delivering high gravimetric/volumetric energy, stable cycle life, and high rate capability. In this review article, we review the recent progress in cathodes development for potassium-ion batteries. These materials are categorized into four types: layered oxides, Prussian blue analogs, poly-anion, and organic compounds. Based on our critical review of the reported literature, we identify poly-anion compounds as a class of promising candidates among all types and provide suggestions for future optimization.
引用
收藏
页码:682 / 692
页数:11
相关论文
共 72 条
[1]   Synthesis and electrochemical properties of pure LiFeSO4F in the triplite structure [J].
Ati, M. ;
Melot, B. C. ;
Chotard, J. -N. ;
Rousse, G. ;
Reynaud, M. ;
Tarascon, J. -M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (11) :1280-1283
[2]   First-principles prediction of insertion potentials in Li-Mn oxides for secondary Li batteries [J].
Aydinol, MK ;
Ceder, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (11) :3832-3835
[3]   Structural and electrochemical properties of lithium vanadium fluorophosphate, LiVPO4F [J].
Barker, J ;
Gover, RKB ;
Burns, P ;
Bryan, A ;
Saidi, MY ;
Swoyer, JL .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :516-520
[4]   A 3.8-V earth-abundant sodium battery electrode [J].
Barpanda, Prabeer ;
Oyama, Gosuke ;
Nishimura, Shin-ichi ;
Chung, Sai-Cheong ;
Yamada, Atsuo .
NATURE COMMUNICATIONS, 2014, 5
[5]   Electrochemical investigation of the P2-NaxCoO2 phase diagram [J].
Berthelot, R. ;
Carlier, D. ;
Delmas, C. .
NATURE MATERIALS, 2011, 10 (01) :74-U3
[6]  
Bevan Ott J., 2000, CHEM THERMODYN, pxv
[7]   Comprehensive Investigation of the Na3V2(PO4)2F3-NaV2(PO4)2F3 System by Operando High Resolution Synchrotron X-ray Diffraction [J].
Bianchini, M. ;
Fauth, F. ;
Brisset, N. ;
Weill, F. ;
Suard, E. ;
Masquelier, C. ;
Croguennec, L. .
CHEMISTRY OF MATERIALS, 2015, 27 (08) :3009-3020
[8]   A novel K-ion battery: hexacyanoferrate(II)/graphite cell [J].
Bie, Xiaofei ;
Kubota, Kei ;
Hosaka, Tomooki ;
Chihara, Kuniko ;
Komaba, Shinichi .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (09) :4325-4330
[9]   Organic electrode for non-aqueous potassium-ion batteries [J].
Chen, Yanan ;
Luo, Wei ;
Carter, Marcus ;
Zhou, Lihui ;
Dai, Jiaqi ;
Fu, Kun ;
Lacey, Steven ;
Li, Tian ;
Wan, Jiayu ;
Han, Xiaogang ;
Bao, Yanping ;
Hu, Liangbing .
NANO ENERGY, 2015, 18 :205-211
[10]   Challenges for Na-ion Negative Electrodes [J].
Chevrier, V. L. ;
Ceder, G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) :A1011-A1014