CoFe2O4 nanoparticles anchored on N/S co-doped mesoporous carbon spheres as efficient bifunctional electrocatalysts for oxygen catalytic reactions

被引:31
作者
Oh, Taeseob [1 ]
Park, Dabin [1 ]
Kim, Jooheon [1 ]
机构
[1] Chung Ang Univ, Sch Chem Engn & Mat Sci, Seoul 156756, South Korea
关键词
Oxygen reduction reaction; Oxygen evolution reaction; Mesoporous carbon sphere; Nitrogen and sulfur co-doping; Metal oxide nanoparticles; METAL-FREE ELECTROCATALYSTS; REDUCTION REACTION; GREEN SYNTHESIS; GRAPHENE OXIDE; NITROGEN; EVOLUTION; NANOTUBES; SULFUR; PHOTOCATALYST; NANOCRYSTALS;
D O I
10.1016/j.ijhydene.2018.11.216
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of a promising bifunctional electrocatalyst for oxygen catalytic reactions such as the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is highly desirable owing to the sluggish kinetics that limit these reactions. In this study, CoFe2O4 nanoparticles anchored on nitrogen and sulfur co-doped mesoporous carbon spheres (CFO/NS-MCS) were prepared as nonprecious metal catalysts, using a facile pyrolysis and hydrothermal treatment process. The co-doping of N and S into the carbon spheres was achieved using thiourea, which played a key role in the bimetallic covalent coupling in the NS-MCS. The as-prepared CFO/NS-MCS exhibited a more promising ORR catalytic performance compared with that of commercial Pt/C, which was attributed to the presence of highly active sites. Remarkably, the CFO/NS-MCS catalysts also showed a high OER catalytic performance comparable with that of commercial RuO2/C in the aspects of onset potential and Tafel slope, and showed a better durability for oxygen catalytic reactions in an alkaline solution. The approach indicated in this research can be applied to develop high-performance electrocatalysts for practical implementation in energy storage and conversion devices. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2645 / 2655
页数:11
相关论文
共 48 条
[1]   Synthesis of CoFe2O4 nanoparticles and investigation of the temperature, surfactant, capping agent and time effects on the size and magnetic properties [J].
Abbasi, Ali ;
Khojasteh, Hossein ;
Hamadanian, Masood ;
Salavati-Niasari, Masoud .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2016, 27 (05) :4972-4980
[2]   Graphene-Based Non-Noble-Metal Catalysts for Oxygen Reduction Reaction in Acid [J].
Byon, Hye Ryung ;
Suntivich, Jin ;
Shao-Horn, Yang .
CHEMISTRY OF MATERIALS, 2011, 23 (15) :3421-3428
[3]   Electrocatalytic reduction of oxygen by FePt alloy nanoparticles [J].
Chen, Wei ;
Kim, Jaemin ;
Sun, Shonheng ;
Chen, Shaowei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (10) :3891-3898
[4]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51
[5]   Cobalt Sulfide Nanoparticles Grown on Nitrogen and Sulfur Codoped Graphene Oxide: An Efficient Electrocatalyst for Oxygen Reduction and Evolution Reactions [J].
Ganesan, Pandian ;
Prabu, Moni ;
Sanetuntikul, Jakkid ;
Shanmugam, Sangaraju .
ACS CATALYSIS, 2015, 5 (06) :3625-3637
[6]   Dual-Phase Spinel MnCo2O4 and Spinel MnCo2O4/Nanocarbon Hybrids for Electrocatalytic Oxygen Reduction and Evolution [J].
Ge, Xiaoming ;
Liu, Yayuan ;
Goh, F. W. Thomas ;
Hor, T. S. Andy ;
Zong, Yun ;
Xiao, Peng ;
Zhang, Zheng ;
Lim, Suo Hon ;
Li, Bing ;
Wang, Xin ;
Liu, Zhaolin .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (15) :12684-12691
[7]   High oxygen-reduction activity and durability of nitrogen-doped graphene [J].
Geng, Dongsheng ;
Chen, Ying ;
Chen, Yougui ;
Li, Yongliang ;
Li, Ruying ;
Sun, Xueliang ;
Ye, Siyu ;
Knights, Shanna .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :760-764
[8]   Sonochemical synthesis of SrMnO3 nanoparticles as an efficient and new catalyst for O2 evolution from water splitting reaction [J].
Gholamrezaei, Sousan ;
Salavati-Niasari, Masoud .
ULTRASONICS SONOCHEMISTRY, 2018, 40 :651-663
[9]   Nitrogen-doped porous carbon spheres anchored with Co3O4 nanoparticles as high-performance anode materials for lithium-ion batteries [J].
Guo, Liangui ;
Ding, Yu ;
Qin, Caiqin ;
Li, Wei ;
Du, Jun ;
Fu, Zhengbin ;
Song, Wulin ;
Wang, Feng .
ELECTROCHIMICA ACTA, 2016, 187 :234-242
[10]   NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries [J].
Han, Xiaopeng ;
Wu, Xiaoyu ;
Zhong, Cheng ;
Deng, Yida ;
Zhao, Naiqin ;
Hu, Wenbin .
NANO ENERGY, 2017, 31 :541-550