Parallel Variable Stiffness Actuators

被引:7
作者
Mathews, Chase W. [1 ]
Braun, David J. [1 ]
机构
[1] Vanderbilt Univ, Dept Mech Engn, Ctr Rehabil Engn & Assist Technol, Adv Robot & Control Lab, Nashville, TN 37235 USA
来源
2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2021年
关键词
ENERGY-CONSUMPTION; DESIGN; WALKING; JOINT;
D O I
10.1109/IROS51168.2021.9636249
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce a new type of compliant actuator named the Parallel Variable Stiffness Actuator (PVSA) which consists of a variable stiffness spring placed in parallel with a direct-drive motor. Parallel variable stiffness actuators provide (i) high-fidelity force control and (ii) controllable energy storage, as they inherit the benefits of direct-drive motors and variable stiffness springs. We present a compact design of the PVSA using a flat motor connected to an adjustable mechanical advantage torsional spring. We show that this PVSA is (1) not subject to the fundamental force control bandwidth limitation of series elastic and variable stiffness actuators, and most notably, (2) enables resonant energy accumulation despite the limited deformation of the spring and the constrained motion of the load attached to the actuator. The latter differentiates parallel variable stiffness actuators from fixed-stiffness parallel elastic actuators. PVSAs may be used with smaller direct-drive motors to match the peak power of larger motors without compromising force control fidelity. PVSAs may be used to implement resonant forcing under joint angle limitations in walking, jumping, running, swimming robots, or robotic exoskeletons used to augmented human motion in the aforementioned tasks.
引用
收藏
页码:8225 / 8231
页数:7
相关论文
共 50 条
[41]   Pennate actuators: force, contraction and stiffness [J].
Jenkins, Tyler ;
Bryant, Matthew .
BIOINSPIRATION & BIOMIMETICS, 2020, 15 (04)
[42]   Variable-stiffness decoupling of redundant planar rotational parallel mechanisms with crossed legs [J].
Li Kangkang ;
Jiang Hongzhou ;
He Jingfeng ;
Zhang Hui .
JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (23) :5525-5533
[43]   A Pneumatically-Actuated Variable-Stiffness Robot Arm Using Parallel Flexures [J].
Venkiteswaran, Venkatasubramanian Kalpathy ;
Hu, Ruiqi ;
Su, Haijun .
2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2018, :1-7
[44]   Variable impedance actuators: A review [J].
Vanderborght, B. ;
Albu-Schaeffer, A. ;
Bicchi, A. ;
Burdet, E. ;
Caldwell, D. G. ;
Carloni, R. ;
Catalano, M. ;
Eiberger, O. ;
Friedl, W. ;
Ganesh, G. ;
Garabini, M. ;
Grebenstein, M. ;
Grioli, G. ;
Haddadin, S. ;
Hoppner, H. ;
Jafari, A. ;
Laffranchi, M. ;
Lefeber, D. ;
Petit, F. ;
Stramigioli, S. ;
Tsagarakis, N. ;
Van Damme, M. ;
Van Ham, R. ;
Visser, L. C. ;
Wolf, S. .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2013, 61 (12) :1601-1614
[45]   A Configurable Architecture for Two Degree-of-Freedom Variable Stiffness Actuators to Match the Compliant Behavior of Human Joints [J].
Lemerle, Simon ;
Catalano, Manuel G. ;
Bicchi, Antonio ;
Grioli, Giorgio .
FRONTIERS IN ROBOTICS AND AI, 2021, 8
[46]   Tracking control via switching and learning for a class of uncertain flexible joint robots with variable stiffness actuators q [J].
Li, Jian ;
Ma, KaiFa ;
Wu, ZhaoJing .
NEUROCOMPUTING, 2022, 469 :130-137
[47]   A Stiffness Estimator for Agonistic-Antagonistic Variable-Stiffness-Actuator Devices [J].
Menard, Tomas ;
Grioli, Giorgio ;
Bicchi, Antonio .
IEEE TRANSACTIONS ON ROBOTICS, 2014, 30 (05) :1269-1278
[48]   BLUE: A Bipedal Robot with Variable Stiffness and Damping [J].
Enoch, Alexander ;
Sutas, Andrius ;
Nakaoka, Shin'ichiro ;
Vijayakumar, Sethu .
2012 12TH IEEE-RAS INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS), 2012, :487-494
[49]   Variable stiffness control for SEAs in rehabilitation training [J].
Li, Siqi ;
Li, Jian ;
Tian, Guihua ;
Shang, Hongcai .
ADVANCED ROBOTICS, 2019, 33 (7-8) :424-438
[50]   Scalable Electroactive Polymer for Variable Stiffness Suspensions [J].
Orita, Atsuo ;
Cutkosky, Mark. R. .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2016, 21 (06) :2836-2846