Differentiability at the Tip of Arnold Tongues for Diophantine Rotations: Numerical Studies and Renormalization Group Explanations

被引:6
作者
de la Llave, Rafael [2 ]
Luque, Alejandro [1 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Arnold tongues; Renormalization; Scaling properties; Computational methods; CRITICAL CIRCLE MAPS; CRITICAL DYNAMICAL-SYSTEMS; IMPLICIT FUNCTION THEOREMS; SMALL DIVISOR PROBLEMS; QUASI-PERIODICITY; PARAMETERIZATION METHOD; DISSIPATIVE SYSTEMS; DIFFEOMORPHISMS; COMPUTATION; NUMBER;
D O I
10.1007/s10955-011-0233-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study numerically the regularity of Arnold tongues corresponding to Diophantine rotation numbers of circle maps at the edge of validity of KAM theorem. This serves as a good test for the numerical stability of two different algorithms. We find empirically that Arnold tongues are only finitely differentiable at the tip. We also find several scaling properties of the Sobolev norms of the conjugacy near the breakdown. We also provide a renormalization group explanation of the regularity at the tip and the scaling behaviors of the Sobolev regularity. We also uncover empirically some other patterns which require explanation.
引用
收藏
页码:1154 / 1188
页数:35
相关论文
共 61 条
[1]  
[Anonymous], 1995, ENCY MATH APPL
[2]  
[Anonymous], 1971, GRADUATE TEXTS MATH
[3]  
Arnold VI., 1961, IZV AKAD NAUK SSSR M, V25, P21
[4]   The parameterization method for invariant manifolds III:: Overview and applications [J].
Cabré, X ;
Fontich, E ;
de la Llave, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 218 (02) :444-515
[5]   The parameterization method for invariant manifolds I:: Manifolds associated to non-resonant subspaces [J].
Cabré, X ;
Fontich, E ;
De la Llave, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (02) :283-328
[6]   Fast numerical computation of quasi-periodic equilibrium states in 1D statistical mechanics, including twist maps [J].
Calleja, Renato ;
de la Llave, Rafael .
NONLINEARITY, 2009, 22 (06) :1311-1336
[7]   Asymptotic rigidity of scaling ratios for critical circle mappings [J].
De Faria, E .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 :995-1035
[8]   Rigidity of critical circle mappings II [J].
De Faria, E ;
De Melo, W .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (02) :343-370
[9]  
de Faria E., 1999, J. Eur. Math. Soc, V1, P339, DOI [10.1007/s100970050011, DOI 10.1007/S100970050011]
[10]   Theory of circle maps and the problem of one-dimensional optical resonator with a periodically moving wall [J].
de la Llave, R ;
Petrov, NP .
PHYSICAL REVIEW E, 1999, 59 (06) :6637-6651