Optimal error estimate of a projection based interpolation for the p-version approximation in three dimensions

被引:12
作者
Cao, W [1 ]
Demkowicz, L
机构
[1] Univ Texas, Dept Appl Math, San Antonio, TX 78249 USA
[2] Univ Texas, Inst Computat Engn & Sci, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
the p-version of the finite-element method; error estimate;
D O I
10.1016/j.camwa.2005.04.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Optimal p-interpolation error estimate is derived for the local, projection-based interpolation for H-1-conforming elements in three space dimensions. Two different procedures leading to the same logarithmic term ln(3/2)p in the estimate, are discussed. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:359 / 366
页数:8
相关论文
共 14 条
[1]   An additive Schwarz preconditioner for p-version boundary element approximation of the hypersingular operator in three dimensions [J].
Ainsworth, M ;
Guo, BQ .
NUMERISCHE MATHEMATIK, 2000, 85 (03) :343-366
[2]  
AINSWORTH M, 2003, 0347 ICES U TEX AUST
[3]   THE OPTIMAL CONVERGENCE RATE OF THE P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SURI, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :750-776
[4]  
CANUTO C, 1982, MATH COMPUT, V38, P67, DOI 10.1090/S0025-5718-1982-0637287-3
[5]  
Cao WM, 2004, J KOREAN MATH SOC, V41, P345
[6]   H1, H(curl) and H(div)-conforming projection-based interpolation in three dimensions Quasi-optimal p-interpolation estimates [J].
Demkowicz, L ;
Buffa, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (2-5) :267-296
[7]  
DEMKOWICZ L, 2004, MONOGRAPH CRACOW U T, V302
[8]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24
[9]  
Lions J-L., 1972, NONHOMOGENEOUS BOUND, DOI 10.1007/978-3-642-65217-2
[10]  
MADAY Y, 1989, CR ACAD SCI I-MATH, V309, P463