Modeling Left Ventricular Blood Flow Using Smoothed Particle Hydrodynamics

被引:32
作者
Caballero, Andres [1 ,2 ]
Mao, Wenbin [1 ,2 ]
Liang, Liang [1 ,2 ]
Oshinski, John [1 ,2 ,3 ]
Primiano, Charles [4 ]
McKay, Raymond [4 ]
Kodali, Susheel [5 ]
Sun, Wei [1 ,2 ]
机构
[1] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[2] Emory Univ, Atlanta, GA 30322 USA
[3] Emory Univ, Dept Radiol & Imaging Sci, Atlanta, GA 30322 USA
[4] Hartford Hosp, Cardiol Dept, Hartford, CT 06115 USA
[5] Columbia Univ, Med Ctr, Struct Heart & Valve Ctr, New York, NY USA
关键词
Left ventricle; Smoothed particle hydrodynamics; Hemodynamics; Computational fluid dynamics; Cardiac magnetic resonance; COMPUTATIONAL FLUID-DYNAMICS; VIVO MRI DATA; MAGNETIC-RESONANCE; LEFT-HEART; NUMERICAL-SIMULATION; UNSTEADY-FLOW; VISCOUS FLOWS; WHOLE HEART; SPH METHOD; 4D FLOW;
D O I
10.1007/s13239-017-0324-z
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
This study aims to investigate the capability of smoothed particle hydrodynamics (SPH), a fully Lagrangian mesh-free method, to simulate the bulk blood flow dynamics in two realistic left ventricular (LV) models. Three dimensional geometries and motion of the LV, proximal left atrium and aortic root are extracted from cardiac magnetic resonance imaging and multi-slice computed tomography imaging data. SPH simulation results are analyzed and compared with those obtained using a traditional finite volume-based numerical method, and to in vivo phase contrast magnetic resonance imaging and echocardiography data, in terms of the large-scale blood flow phenomena usually clinically measured. A quantitative comparison of the velocity fields and global flow parameters between the in silico models and the in vivo data shows a reasonable agreement, given the inherent uncertainties and limitations in the modeling and imaging techniques. The results indicate the capability of SPH as a promising tool for predicting clinically relevant large-scale LV flow information.
引用
收藏
页码:465 / 479
页数:15
相关论文
共 61 条
  • [1] Adami S., 2014, Modeling and simulation of multiphase phenomena with smoothed particle hydrodynamics
  • [2] [Anonymous], 2016, GUID AB VERS 2016
  • [3] Image-based large-eddy simulation in a realistic left heart
    Chnafa, C.
    Mendez, S.
    Nicoud, F.
    [J]. COMPUTERS & FLUIDS, 2014, 94 : 173 - 187
  • [4] Assessment of Valvular Heart Disease by Cardiovascular Magnetic Resonance Imaging: A Review
    Christiansen, Jonathan P.
    Karamitsos, Theodoros D.
    Myerson, Saul G.
    [J]. HEART LUNG AND CIRCULATION, 2011, 20 (02) : 73 - 82
  • [5] Numerical simulation of interfacial flows by smoothed particle hydrodynamics
    Colagrossi, A
    Landrini, M
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 191 (02) : 448 - 475
  • [6] SPACE CONSERVATION LAW IN FINITE VOLUME CALCULATIONS OF FLUID-FLOW
    DEMIRDZIC, I
    PERIC, M
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1988, 8 (09) : 1037 - 1050
  • [7] Combined experimental and numerical analysis of the flow structure into the left ventricle
    Domenichini, F.
    Querzoli, G.
    Cenedese, A.
    Pedrizzetti, G.
    [J]. JOURNAL OF BIOMECHANICS, 2007, 40 (09) : 1988 - 1994
  • [8] The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle
    Doost, Siamak N.
    Zhong, Liang
    Su, Boyang
    Morsi, Yosry S.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 127 : 232 - 247
  • [9] Ferziger J H, 2012, COMPUTATIONAL METHOD
  • [10] ACCURACY OF MR PHASE-CONTRAST VELOCITY-MEASUREMENTS FOR UNSTEADY-FLOW
    FRAYNE, R
    STEINMAN, DA
    ETHIER, CR
    RUTT, BK
    [J]. JMRI-JOURNAL OF MAGNETIC RESONANCE IMAGING, 1995, 5 (04): : 428 - 431