THE GROWTH RATE OF THE DIGITS IN THE LUROTH EXPANSIONS

被引:4
作者
Lu, Meiying [1 ]
机构
[1] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
关键词
Luroth Expansion; Exceptional Set; Hausdorff Dimension;
D O I
10.1142/S0218348X20500644
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any x is an element of (0, 1], let x = 1/d(1) + 1/d(1)(d(1) - 1)d(2) + ... + 1/d(1)(d(1) - 1) ... d(n-1) (d(n-1) - 1)d(n) + ... be its Luroth expansion with digits {d(j) >= 2,for all j >= 1}. This paper is concerned with the growth rate of the digits in the Luroth expansions. Let psi : N -> R+ be a function satisfying psi(n + 1) - psi(n) -> infinity as n -> infinity and lim(n ->infinity) (psi(n +1)/psi(n) = b >= 1. In this paper, we consider the set E(psi) := { x is an element of (0, 1] : lim(n ->infinity) 1/psi(n) Sigma(n)(j=1) log d(j) (x) = 1} , and we quantify the size of E(psi) in the sense of Hausdorff dimension. As applications, we get the Hausdorff dimensions of the sets of points for which Sigma(n)(j=1) log d(j) (x) grows with polynomial and exponential rate.
引用
收藏
页数:8
相关论文
共 18 条
[1]   Frequency of digits in the Luroth expansion [J].
Barreira, Luis ;
Iommi, Godofredo .
JOURNAL OF NUMBER THEORY, 2009, 129 (06) :1479-1490
[2]  
Barrionuevo J, 1996, ACTA ARITH, V74, P311
[3]  
Billingsley P., 1965, Ergodic theory and information
[4]   The efficiency of approximating real numbers by Luroth expansion [J].
Cao, Chunyun ;
Wu, Jun ;
Zhang, Zhenliang .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (02) :497-513
[5]  
Dajani K., 2002, Carus Mathematical Monographs, V29
[6]  
Dajani K., 1996, J THEOR NOMBRES BORD, V8, P331
[7]  
Falconer K., 1990, Fractal Geometry: Mathematical Foundations and Applications
[8]   On Khintchine exponents and Lyapunov exponents of continued fractions [J].
Fan, Ai-Hua ;
Liao, Ling-Min ;
Wang, Bao-Wei ;
Wu, Jun .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 :73-109
[9]   Dimension of Besicovitch-Eggleston sets in countable symbolic space [J].
Fan, Aihua ;
Liao, Lingmin ;
Ma, Jihua ;
Wang, Baowei .
NONLINEARITY, 2010, 23 (05) :1185-1197
[10]  
Galambos J., 1976, LECT NOTES MATH, V502