Critical graphs for the chromatic edge-stability number

被引:8
作者
Bresar, Bostjan [1 ,2 ]
Klavzar, Sandi [1 ,2 ,3 ]
Movarraei, Nazanin [4 ]
机构
[1] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[4] Yazd Univ, Dept Math, Yazd, Iran
关键词
Chromatic edge-stability; Edge-stability critical graph; Odd cycle; Computational complexity; FRUSTRATION;
D O I
10.1016/j.disc.2020.111845
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The chromatic- edge-stability number es(chi) (G) of a graph G is the minimum number of edges whose removal results in a spanning subgraph G' with chi(G') = chi(G) - 1. Edge-stability critical graphs are introduced as the graphs G with the property that es(chi) (G- e) < es(chi) (G) holds for every edge e. E(G). If G is an edge-stability critical graph with.(G) = k and es(chi) (G) = l, then G is (k, l)-critical. Graphs which are (3, 2)-critical and contain at most four odd cycles are classified. It is also proved that the problem of deciding whether a graph G has chi(G) = k and is critical for the chromatic number can be reduced in polynomial time to the problem of deciding whether a graph is (k, 2)-critical. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 16 条
  • [1] Nordhaus-Gaddum and other bounds for the chromatic edge-stability number
    Akbari, Saieed
    Klavzar, Sandi
    Movarraei, Nazanin
    Nahvi, Mina
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2020, 84
  • [2] [Anonymous], 1995, WILEY INTERSCIENCE S
  • [3] Optimal packings of edge-disjoint odd cycles
    Berge, C
    Reed, B
    [J]. DISCRETE MATHEMATICS, 2000, 211 (1-3) : 197 - 202
  • [4] Computing the bipartite edge frustration of fullerene graphs
    Doslic, Tomislav
    Vukicevic, Damir
    [J]. DISCRETE APPLIED MATHEMATICS, 2007, 155 (10) : 1294 - 1301
  • [5] Bipartizing fullerenes
    Dvorak, Zdenek
    Lidicky, Bernard
    Skrekovski, Riste
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (06) : 1286 - 1293
  • [6] Erdos P., 1968, Theory of Graphs, P361
  • [7] On the Chromatic Edge Stability Number of Graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    Movarraei, Nazanin
    [J]. GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1539 - 1551
  • [8] The minimum number of edges in a 4-critical graph that is bipartite plus 3 edges
    Kostochka, A. V.
    Reiniger, B. M.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2015, 46 : 89 - 94
  • [9] A Brooks-Type Result for Sparse Critical Graphs
    Kostochka, Alexandr
    Yancey, Matthew
    [J]. COMBINATORICA, 2018, 38 (04) : 887 - 934
  • [10] Edge-disjoint odd cycles in planar graphs
    Král, D
    Voss, HJ
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 90 (01) : 107 - 120