An alternative method to generate pre-initial conditions for cosmological N-body simulations

被引:18
作者
Liao, Shihong [1 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Key Lab Computat Astrophys, Beijing 100012, Peoples R China
关键词
methods: numerical; dark matter; large-scale structure of Universe; PERTURBATION-THEORY; DARK-MATTER; EVOLUTION; CLUSTERS; FIELDS; GRIDS;
D O I
10.1093/mnras/sty2523
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Currently, grid and glassmethods are the two most popular choices to generate uniform particle distributions (i.e. pre-initial conditions) for cosmological N-body simulations. In this article, we introduce an alternative method called the capacity constrained Voronoi tessellation (CCVT), which originates from computer graphics. As a geometrical equilibrium state, a CCVT particle configuration satisfies two constraints: (i) the volume of the Voronoi cell associated with each particle is equal; (ii) every particle is in the centre-of-mass position of its Voronoi cell. We show that the CCVT configuration is uniform and isotropic, follows perfectly the minimal power spectrum, P(k) proportional to k(4), and is quite stable under gravitational interactions. It is natural to incorporate periodic boundary conditions during CCVT making, therefore, we can obtain a larger CCVT by tiling with a small periodic CCVT. When applying the CCVT pre-initial condition to cosmological N-body simulations, we show that it plays as good as grid and glass schemes. The CCVT method will be helpful in studying the numerical convergence of pre-initial conditions in cosmological simulations. It can also be used to set up pre-initial conditions in smoothed-particle hydrodynamics simulations.
引用
收藏
页码:3750 / 3760
页数:11
相关论文
共 47 条
[1]   Planck 2015 results XIII. Cosmological parameters [J].
Ade, P. A. R. ;
Aghanim, N. ;
Arnaud, M. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Bartolo, N. ;
Battaner, E. ;
Battye, R. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bonaldi, A. ;
Bonavera, L. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chary, R. -R. ;
Chiang, H. C. ;
Chluba, J. ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Combet, C. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. ;
Davis, R. J. ;
de Bernardis, P. .
ASTRONOMY & ASTROPHYSICS, 2016, 594
[2]  
[Anonymous], 1965, Adv. Astron. Astrophys.
[3]   Minkowski-type theorems and least-squares clustering [J].
Aurenhammer, F ;
Hoffmann, F ;
Aronov, B .
ALGORITHMICA, 1998, 20 (01) :61-76
[4]   On the problem of initial conditions in cosmological N-body simulations [J].
Baertschiger, T ;
Labini, FS .
EUROPHYSICS LETTERS, 2002, 57 (03) :322-328
[5]  
Balzer M., 2009, SIGGRAPH 09, V86, P1
[6]  
BALZER M, 2008, P 5 ANN INT S VOR DI, P44
[7]   The Quickhull algorithm for convex hulls [J].
Barber, CB ;
Dobkin, DP ;
Huhdanpaa, H .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (04) :469-483
[8]  
BAUGH CM, 1995, MON NOT R ASTRON SOC, V274, P1049
[9]   Halo formation in warm dark matter models [J].
Bode, P ;
Ostriker, JP ;
Turok, N .
ASTROPHYSICAL JOURNAL, 2001, 556 (01) :93-107
[10]   Quaquaversal tilings and rotations [J].
Conway, JH ;
Radin, C .
INVENTIONES MATHEMATICAE, 1998, 132 (01) :179-188