Wavelet-based multilevel methods for linear ill-posed problems

被引:10
作者
Klann, E. [2 ]
Ramlau, R. [3 ]
Reichel, L. [1 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
[3] Johannes Kepler Univ Linz, Inst Ind Math, A-4040 Linz, Austria
关键词
Ill-posed problem; Wavelet; Multilevel method; Minimal residual method;
D O I
10.1007/s10543-011-0320-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The representation of linear operator equations in terms of wavelet bases yields a multilevel framework, which can be exploited for iterative solution. This paper describes cascadic multilevel methods that employ conjugate gradient-type methods on each level. The iterations are on each level terminated by a stopping rule based on the discrepancy principle.
引用
收藏
页码:669 / 694
页数:26
相关论文
共 30 条
[1]  
[Anonymous], 1992, CBMS-NSF Reg. Conf. Ser. in Appl. Math
[2]  
[Anonymous], 1997, Wavelets: Theory and Applications
[3]  
[Anonymous], 2003, ITERATIVE METHODS SP, DOI DOI 10.1137/1.9780898718003
[4]  
Bjorck A, 1996, NUMERICAL METHODS L
[5]   The cascadic multigrid method for elliptic problems [J].
Bornemann, FA ;
Deuflhard, P .
NUMERISCHE MATHEMATIK, 1996, 75 (02) :135-152
[6]  
Calvetti D., 2001, International Journal of Applied Mathematics and Computer Science, V11, P1069
[7]   A multilevel augmentation method for solving ill-posed operator equations [J].
Chen, ZY ;
Xu, YS ;
Yang, HQ .
INVERSE PROBLEMS, 2006, 22 (01) :155-174
[8]  
Cohen Albert, 2003, Numerical Analysis of wavelet Methods. J. Studies in Mathematics and Its Applications, V32
[9]   On the regularizing power of multigrid-type algorithms [J].
Donatelli, M ;
Serra-Capizzano, S .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 27 (06) :2053-2076
[10]  
Donatelli M, 2007, ELECTRON T NUMER ANA, V29, P163