Quantum error-correction codes and absolutely maximally entangled states

被引:16
作者
Mazurek, Pawel [1 ,2 ]
Farkas, Mate [1 ,2 ]
Grudka, Andrzej [3 ]
Horodecki, Michal [1 ,2 ]
Studzinski, Michal [1 ]
机构
[1] Univ Gdansk, Fac Math, Natl Quantum Informat Ctr, Inst Theoret Phys & Astrophys, PL-80308 Gdansk, Poland
[2] Univ Gdansk, Int Ctr Theory Quantum Technol, PL-80308 Gdansk, Poland
[3] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland
关键词
Network coding - Quantum entanglement - Quantum optics;
D O I
10.1103/PhysRevA.101.042305
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
For every stabilizer N-qudit absolutely maximally entangled state, we present a method for determining the stabilizer generators and logical operators of a corresponding quantum error-correction code. These codes encode k qudits into N - k qudits, with k <= left perpendicular N/2 right perpendicular, where the local dimension d is prime. We use these methods to analyze the concatenation of such quantum codes and link this procedure to entanglement swapping. Using our techniques, we investigate the spread of quantum information on a tensor network code formerly used as a toy model for the AdS/CFT correspondence. In this network, we show how corrections arise to the Ryu-Takayanagi formula in the case of entangled input state, and that the bound on the entanglement entropy of the boundary state is saturated for absolutely maximally entangled input states.
引用
收藏
页数:10
相关论文
共 25 条
[1]  
[Anonymous], ARXIV13062879
[2]  
[Anonymous], ARXIVQUANTPH0406168
[3]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[4]   Multiqubit systems: highly entangled states and entanglement distribution [J].
Borras, A. ;
Plastino, A. R. ;
Batle, J. ;
Zander, C. ;
Casas, M. ;
Plastino, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (44) :13407-13421
[5]   Quantum stabilizer codes embedding qubits into qudits [J].
Cafaro, Carlo ;
Maiolini, Federico ;
Mancini, Stefano .
PHYSICAL REVIEW A, 2012, 86 (02)
[6]   Quantum-error correction and orthogonal geometry [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
PHYSICAL REVIEW LETTERS, 1997, 78 (03) :405-408
[7]   Maximally multipartite entangled states [J].
Facchi, Paolo ;
Florio, Giuseppe ;
Parisi, Giorgio ;
Pascazio, Saverio .
PHYSICAL REVIEW A, 2008, 77 (06)
[8]  
Gaitan F., 2008, Quantum Error Correction and Fault Tolerant Quantum Computing
[9]  
Gottesman D., 1997, Stabilizer Codes and Quantum Error Correction
[10]   Entanglement and quantum combinatorial designs [J].
Goyeneche, Dardo ;
Raissi, Zahra ;
Di Martino, Sara ;
Zyczkowski, Karol .
PHYSICAL REVIEW A, 2018, 97 (06)