A Reidemeister trace for fibred maps

被引:0
作者
Ferrario, Davide L. [1 ]
机构
[1] Univ Milano Bicocca, Dept Math & Applicat, I-20125 Milan, Italy
关键词
Reidemeister trace; fibred map; fibred CW-complex; CW-COMPLEXES; HOMOTOPY; DIAGRAMS; CATEGORY; HOMOLOGY; THEOREM; SPACES;
D O I
10.1007/s11784-011-0051-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Reidemeister trace for fibred maps is defined as the alternating sum of suitable (elementary) traces for linear morphisms of fibred cellular free modules with local coefficients. This invariant extends in a natural way the classical construction of the generalized Lefschetz number-Reidemeister trace-to the category of fibred CW-complexes.
引用
收藏
页码:113 / 127
页数:15
相关论文
共 30 条
[1]  
Baues H. J., 1989, Algebraic Homotopy
[2]   Homotopy and homology of fibred spaces [J].
Baues, HJ ;
Ferrario, DL .
TOPOLOGY AND ITS APPLICATIONS, 2004, 139 (1-3) :63-96
[3]   Stratified fibre bundles [J].
Baues, HJ ;
Ferrario, DL .
FORUM MATHEMATICUM, 2004, 16 (06) :865-902
[4]   K-theory of stratified vector bundles [J].
Baues, HJ ;
Ferrario, DL .
K-THEORY, 2003, 28 (03) :259-284
[5]  
BAUES HJ, 1999, COMBINATORIAL FDN HO
[6]  
Bredon G.E., 1967, Equivariant cohomology theories. Lecture Notes in Mathematics
[7]  
Costenoble S.R., 2001, Equivariant Stable Homotopy Theory and Related Areas, Stanford, CA, 2000, Homol. Homotopy Appl., V3, P265
[8]   A base-point-free definition of the Lefschetz invariant [J].
Coufal, Vesta .
FIXED POINT THEORY AND APPLICATIONS, 2006, 2006 (1)
[9]  
Crabb M., 1998, FIBREWISE HOMOTOPY T
[10]   Spaces over a category and assembly maps in isomorphism conjectures in K- and L-theory [J].
Davis, JF ;
Luck, W .
K-THEORY, 1998, 15 (03) :201-252