Exponential Observers for Nonlinear Oscillators

被引:0
|
作者
Vaidyanathan, Sundarapandian [1 ]
Madhavan, Kavitha [2 ]
机构
[1] Vel Tech Univ, Res & Dev Ctr, Madras 600062, Tamil Nadu, India
[2] Vel Tech Univ, Dept Math, Madras 600062, Tamil Nadu, India
关键词
nonlinear oscillators; mechanical systems; observers; observability; nonlinear control systems; CANONICAL FORM; SYSTEMS; DESIGN; STATE;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, exponential observers are constructed using Sundarapandian's observer design (2002) for the second order and third order nonlinear oscillators. The study of nonlinear oscillators has been very important in the study of dynamical systems. Nonlinear oscillators have many applications in areas such as mechanical engineering, electrical engineering, etc. Numerical examples and MATLAB plots have been shown to illustrate the main results derived in this paper.
引用
收藏
页码:320 / 324
页数:5
相关论文
共 50 条
  • [31] Robustness of nonlinear observers
    Ryckaert, VG
    Boelen, T
    Sepulchre, R
    Van Impe, JF
    NONLINEAR CONTROL SYSTEMS DESIGN 1998, VOLS 1& 2, 1998, : 787 - 792
  • [32] On nonlinear continuous observers
    Beijing Univ of Aeronautics and, Astronautics, Beijing, China
    Int J Control, 6 (943-954):
  • [33] Global nonlinear observers
    Olivier, PD
    PROCEEDINGS OF THE THIRTY-SIXTH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 2004, : 348 - 353
  • [34] On nonlinear continuous observers
    Xia, X
    Zeitz, M
    INTERNATIONAL JOURNAL OF CONTROL, 1997, 66 (06) : 943 - 954
  • [35] Comparison of Nonlinear Observers for a Nonlinear System
    Abdelkader, Amira
    Boussada, Moez
    Fiaty, Koffi
    Nouri, Ahmed Said
    Hammouri, Hassan
    SYSTEMS, AUTOMATION, AND CONTROL, 2019, 9 : 139 - 157
  • [36] Exponential Boundary Observers for Pressurized Water Pipe
    Som, Idellette Judith Hermine
    Cocquempot, Vincent
    Aitouche, Abdel
    12TH EUROPEAN WORKSHOP ON ADVANCED CONTROL AND DIAGNOSIS (ACD 2015), 2015, 659
  • [37] Exponential observers of states of planar bilinear systems
    Korovin, SK
    Fomichev, VV
    DOKLADY MATHEMATICS, 2001, 64 (02) : 286 - 289
  • [38] Optimization-oriented exponential-polynomial-closure approach for analyzing nonlinear stochastic oscillators
    Bai, Guo-Peng
    Er, Guo-Kang
    Iu, Vai Pan
    Lam, Chi Chiu
    PROBABILISTIC ENGINEERING MECHANICS, 2023, 73
  • [39] Exponential Observers for Distributed Tubular (Bio)Reactors
    Garcia, Miriam R.
    Vilas, Carlos
    Banga, Julio R.
    Alonso, Antonio A.
    AICHE JOURNAL, 2008, 54 (11) : 2943 - 2956
  • [40] Singularly Perturbed Oscillators with Exponential Nonlinearities
    S. Jelbart
    K. U. Kristiansen
    P. Szmolyan
    M. Wechselberger
    Journal of Dynamics and Differential Equations, 2022, 34 : 1823 - 1875