On the nonvanishing of generalised Kato classes for elliptic curves of rank 2

被引:5
|
作者
Castella, Francesc [1 ]
Hsieh, Ming-Lun [2 ,3 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[2] Acad Sinica, Inst Math, Taipei 10617, Taiwan
[3] Natl Ctr Theoret Sci, Math Div, Taipei 10617, Taiwan
基金
美国国家科学基金会;
关键词
ADIC L-FUNCTIONS; TRIPLE PRODUCT; HEEGNER POINTS; IWASAWA THEORY; MAIN CONJECTURE; ZETA-FUNCTIONS; REPRESENTATIONS; HEIGHTS; VALUES; CYCLES;
D O I
10.1017/fms.2021.85
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E/Q be an elliptic curve and p > 3 be a good ordinary prime for E and assume that L(E,1) = 0 with root number +1 (so ord(s=1)}L(E,s) >= 2 ). A construction of Darmon-Rotger attaches to E and an auxiliary weight 1 cuspidal eigenform g such that L(E, ad(0) (g),1) not equal 0 , a Selmer class kappa(p) is an element of Sel (Q,VpE), and they conjectured the equivalence kappa(p) not equal 0 double left right arrow dim(Qp) Sel (Q,VpE) = 2. In this article, we prove the first cases on Darmon-Rotger's conjecture when the auxiliary eigenform g has complex multiplication. In particular, this provides a new construction of nontrivial Selmer classes for elliptic curves of rank 2.
引用
收藏
页数:32
相关论文
共 27 条