Blow-Up of Solutions to Fractional-in-Space Burgers-Type Equations

被引:1
作者
Alotaibi, Munirah [1 ]
Jleli, Mohamed [1 ]
Samet, Bessem [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
关键词
fractional-in-space Burgers equation; fractional-in-space Korteweg-de Vries-Burgers equation; global solution; blow-up; DE-VRIES EQUATION; GLOBAL UNSOLVABILITY; PROFILE;
D O I
10.3390/fractalfract5040249
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider fractional-in-space analogues of Burgers equation and Korteweg-de Vries-Burgers equation on bounded domains. Namely, we establish sufficient conditions for finite-time blow-up of solutions to the mentioned equations. The obtained conditions depend on the initial value and the boundary conditions. Some examples are provided to illustrate our obtained results. In the proofs of our main results, we make use of the test function method and some integral inequalities.
引用
收藏
页数:12
相关论文
共 19 条
[11]   UNIFIED SHOCK PROFILE IN A PLASMA [J].
GRAD, H ;
HU, PN .
PHYSICS OF FLUIDS, 1967, 10 (12) :2596-&
[12]   A NON-LINEAR EQUATION INCORPORATING DAMPING AND DISPERSION [J].
JOHNSON, RS .
JOURNAL OF FLUID MECHANICS, 1970, 42 :49-&
[13]   The profile of blowing-up solutions to a nonlinear system of fractional differential equations [J].
Kirane, Mokhtar ;
Malik, Salman A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (12) :3723-3736
[14]  
Mitidieri E., 2001, P STEKLOV I MATH, V234, P1
[15]  
MURAWSKI K, 1985, Z NATURFORSCH A, V40, P955
[16]  
Samko A. A., 1993, FRACTIONAL INTEGRALS
[17]   KORTEWEG-DE VRIES EQUATION AND GENERALIZATIONS .3. DERIVATION OF KORTEWEG-DE VRIES EQUATION AND BURGERS EQUATION [J].
SU, CH ;
GARDNER, CS .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (03) :536-&
[18]   Global Unsolvability of the Burgers Equation with Fractional Time Derivative [J].
Torebek, B. T. .
DIFFERENTIAL EQUATIONS, 2019, 55 (06) :867-870
[19]   Global unsolvability of one-dimensional problems for Burgers-type equations [J].
Yushkov, E. V. ;
Korpusov, M. O. .
MATHEMATICAL NOTES, 2015, 98 (3-4) :503-514