Partial Regularity for Harmonic Maps into Spheres at a Singular or Degenerate Free Boundary

被引:2
作者
Moser, Roger [1 ]
Roberts, James [1 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
关键词
Harmonic maps; Free boundary; Degenerate elliptic; Partial regularity; SURFACE;
D O I
10.1007/s12220-021-00788-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove partial regularity of weakly stationary harmonic maps with (partially) free boundary data on manifolds where the domain metric may degenerate or become singular along the free boundary at the rate d(alpha) for the distance function d from the boundary.
引用
收藏
页数:39
相关论文
共 50 条
[41]   Partial Regularity of Polyharmonic Maps to Targets of Sufficiently Simple Topology [J].
Gastel, Andreas .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (04) :397-410
[42]   A REMARK ON INSTABILITY OF HARMONIC MAPS BETWEEN SPHERES [J].
Nakajima, Toru .
PACIFIC JOURNAL OF MATHEMATICS, 2009, 240 (02) :363-369
[43]   Torus equivariant harmonic maps between spheres [J].
Gastel, A .
TOPOLOGY, 2002, 41 (02) :213-227
[44]   Integro-Differential Harmonic Maps into Spheres [J].
Schikorra, Armin .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 40 (03) :506-539
[45]   Partial regularity for degenerate systems of double phase type [J].
Ok, Jihoon ;
Scilla, Giovanni ;
Stroffolini, Bianca .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 432
[46]   Boundary regularity for viscosity solutions to degenerate elliptic PDEs [J].
Gripenberg, G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 352 (01) :175-183
[47]   On the Size of the Singular Set of Minimizing Harmonic Maps [J].
Mazowiecka, Katarzyna ;
Miskiewicz, Michal ;
Schikorra, Armin .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 302 (1519)
[48]   Rectifiability of the Singular Set of Harmonic Maps into Buildings [J].
Dees, Ben K. .
JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (07)
[49]   Rectifiability of the Singular Set of Harmonic Maps into Buildings [J].
Ben K. Dees .
The Journal of Geometric Analysis, 2022, 32
[50]   Singular behavior of harmonic maps near corners [J].
Bezrodnykh, S. I. ;
Vlasov, V. I. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (05) :838-851