Partial Regularity for Harmonic Maps into Spheres at a Singular or Degenerate Free Boundary

被引:2
作者
Moser, Roger [1 ]
Roberts, James [1 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
关键词
Harmonic maps; Free boundary; Degenerate elliptic; Partial regularity; SURFACE;
D O I
10.1007/s12220-021-00788-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove partial regularity of weakly stationary harmonic maps with (partially) free boundary data on manifolds where the domain metric may degenerate or become singular along the free boundary at the rate d(alpha) for the distance function d from the boundary.
引用
收藏
页数:39
相关论文
共 50 条
[32]   Partial regularity for biharmonic maps, revisited [J].
Michael Struwe .
Calculus of Variations and Partial Differential Equations, 2008, 33 :249-262
[33]   Partial regularity for optimal transport maps [J].
Guido De Philippis ;
Alessio Figalli .
Publications mathématiques de l'IHÉS, 2015, 121 :81-112
[34]   Existence, uniqueness and regularity of the free boundary in the Hele-Shaw problem with a degenerate phase [J].
Blank, Ivan A. ;
Korten, Marianne K. ;
Moore, Charles N. .
HARMONIC ANALYSIS, PARTIAL DIFFERENTIAL EQUATIONS, AND RELATED TOPICS, 2007, 428 :33-+
[35]   On the regularity of harmonic functions and spherical harmonic maps defined on lattices [J].
Thomas, LE .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 262 (02) :633-650
[37]   Regularity of the p-harmonic maps with potential [J].
Chu, Yu-Ming ;
Liu, Xian-Gao .
PACIFIC JOURNAL OF MATHEMATICS, 2008, 237 (01) :45-56
[38]   Regularity and relaxed problems of minimizing biharmonic maps into spheres [J].
Min-Chun Hong ;
Changyou Wang .
Calculus of Variations and Partial Differential Equations, 2005, 23 :425-450
[39]   Harmonic Maps with Free Boundary from Degenerating Bordered Riemann Surfaces [J].
Lei Liu ;
Chong Song ;
Miaomiao Zhu .
The Journal of Geometric Analysis, 2022, 32
[40]   Harmonic Maps with Free Boundary from Degenerating Bordered Riemann Surfaces [J].
Liu, Lei ;
Song, Chong ;
Zhu, Miaomiao .
JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (02)