Partial Regularity for Harmonic Maps into Spheres at a Singular or Degenerate Free Boundary

被引:2
作者
Moser, Roger [1 ]
Roberts, James [1 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
关键词
Harmonic maps; Free boundary; Degenerate elliptic; Partial regularity; SURFACE;
D O I
10.1007/s12220-021-00788-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove partial regularity of weakly stationary harmonic maps with (partially) free boundary data on manifolds where the domain metric may degenerate or become singular along the free boundary at the rate d(alpha) for the distance function d from the boundary.
引用
收藏
页数:39
相关论文
共 50 条
[21]   A Remark on Isolated Singularities at the Free Boundary of Harmonic Maps [J].
Michael Grüter .
Annals of Global Analysis and Geometry, 1997, 15 :173-178
[22]   The Free Boundary Value Problem of α-Harmonic Maps Flow [J].
Ai, Wanjun ;
Wang, Jun ;
Zhu, Miaomiao .
COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2024,
[23]   A remark on isolated singularities at the free boundary of harmonic maps [J].
Gruter, M .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1997, 15 (02) :173-178
[24]   Sharp regularity for a singular fully nonlinear parabolic free boundary problem [J].
Araujo, Damiao J. ;
Sa, Ginaldo S. ;
Urbano, Jose Miguel .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 389 :90-113
[25]   Full and partial regularity for a class of nonlinear free boundary problems [J].
Karakhanyan, Aram .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (04) :981-999
[26]   Regularity of Dirac-Harmonic Maps [J].
Wang, Changyou ;
Xu, Deliang .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (20) :3759-3792
[27]   AN Lp REGULARITY THEORY FOR HARMONIC MAPS [J].
Moser, Roger .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (01) :1-30
[28]   A remark on generalized harmonic maps into spheres [J].
Ge, YX .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (04) :495-506
[29]   Partial regularity of minimizers of a functional involving forms and maps [J].
Mariano Giaquinta ;
Min-Chun Hong .
Nonlinear Differential Equations and Applications NoDEA, 2004, 11 :469-490
[30]   Partial regularity of minimizers of a functional involving forms and maps [J].
Giaquinta, M ;
Hong, MC .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2004, 11 (04) :469-490