Auxeticity from nonlinear vibrational modes

被引:16
作者
Dmitriev, S. V. [1 ,2 ]
Korznikova, E. A. [1 ]
Bokij, D. I. [3 ]
Zhou, K. [4 ]
机构
[1] Russian Acad Sci, Inst Met Superplast Problems, 39 Khalturin St, Ufa 450001, Russia
[2] Peter Great St Petersburg Polytech Univ, Res Lab Mech New Nanomat, St Petersburg 195251, Russia
[3] Atomproekt, 82 Savushkina St, St Petersburg 197183, Russia
[4] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2016年 / 253卷 / 07期
基金
俄罗斯科学基金会;
关键词
auxetic; discrete breather; nonlinear lattice; INTRINSIC LOCALIZED MODES; ELASTIC PROPERTIES; POISSONS RATIO; DISCRETE BREATHERS; CUBIC MATERIALS; FCC CRYSTALS; GRAPHENE; EXCITATION; ENERGY; EDGE;
D O I
10.1002/pssb.201600086
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
It is demonstrated that the large-amplitude, short-wavelength vibrational modes excited in the lattice can change its elastic properties due to physical and/or geometric nonlinearity of the lattice bonds. Depending on the symmetry of the vibrational mode the symmetry of the elastic properties of the lattice can also change. Using as an example the two-dimensional honeycomb structure with beta-FPU pairwise interparticle interactions, we demonstrate that the excitation of a large-amplitude vibrational mode in combination with equiaxial tensile strain can change the sign of the Poisson's ratio from positive to negative, thus leading to the auxetic property of the lattice. It is shown that the considered lattice supports discrete breathers, i.e., spatially localized nonlinear vibrational modes. The excitation of the discrete breathers as a result of the modulational instability of the extended short-wavelength modes is analyzed. Our results contribute to the understanding of the relation between the elastic properties and nonlinear dynamics of the lattices of interacting particles. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1310 / 1317
页数:8
相关论文
共 62 条
[1]  
Alderson A, 1999, CHEM IND-LONDON, P384
[2]   Auxetic Materials and Related Systems [J].
Alderson, Kim L. ;
Alderson, Andrew ;
Grima, Joseph N. ;
Wojciechowski, Krzysztof W. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2014, 251 (02) :263-266
[3]   How to make auxetic fibre reinforced composites [J].
Alderson, KL ;
Simkins, VR ;
Coenen, VL ;
Davies, PJ ;
Alderson, A ;
Evans, KE .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2005, 242 (03) :509-518
[4]  
[Anonymous], 1995, MOL PHYS REP
[5]   Simulation of variations in mechanical properties of polyurethane elastomers modified with carbon nanotubes [J].
Badamshina, E. R. ;
Goldstein, R. V. ;
Olkhov, Yu. A. ;
Ustinov, K. B. ;
Estrin, Ya. I. .
PHYSICAL MESOMECHANICS, 2013, 16 (02) :93-98
[6]   Discrete breather clusters in strained graphene [J].
Baimova, Julia A. ;
Dmitriev, Sergey V. ;
Zhou, Kun .
EPL, 2012, 100 (03)
[7]   Negative Poisson's ratios as a common feature of cubic metals [J].
Baughman, RH ;
Shacklette, JM ;
Zakhidov, AA ;
Stafström, S .
NATURE, 1998, 392 (6674) :362-365
[8]   Cubic materials in different auxetic regions: Linking microscopic to macroscopic formulations [J].
Branka, A. C. ;
Heyes, D. M. ;
Mackowiak, Sz. ;
Pieprzyk, S. ;
Wojciechowski, K. W. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2012, 249 (07) :1373-1378
[9]   Auxeticity of cubic materials under pressure [J].
Branka, A. C. ;
Heyes, D. M. ;
Wojciechowski, K. W. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2011, 248 (01) :96-104
[10]   Auxeticity of cubic materials [J].
Branka, A. C. ;
Heyes, D. M. ;
Wojciechowski, K. W. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (09) :2063-2071