Mechanism of SOA formation determines magnitude of radiative effects

被引:49
作者
Zhu, Jialei [1 ]
Penner, Joyce E. [1 ]
Lin, Guangxing [2 ]
Zhou, Cheng [1 ]
Xu, Li [3 ]
Zhuang, Bingliang [4 ]
机构
[1] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[2] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA
[3] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA
[4] Nanjing Univ, Sch Atmospher Sci, Nanjing 210023, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
SOA; mixing state; radiative effects; future climate; ORGANIC AEROSOL; MIXING STATE; BLACK-CARBON; PARTICULATE MATTER; REACTIVE UPTAKE; PARTICLES; CONDENSATION; DICARBONYLS; VOLATILITY; NUCLEATION;
D O I
10.1073/pnas.1712273114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Secondary organic aerosol (SOA) nearly always exists as an internal mixture, and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing state based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66% of SOA is internally mixed with sulfate, while 34% is internally mixed with primary soot. Compared with using an external mixture, the direct effect of SOA is decreased due to the decrease in total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced, and this is responsible for a large decrease in the cloud albedo effect. Internal mixing decreases the radiative effect of SOA by a factor of >4 compared with treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of -0.05 W m(-2). When the combined effects of changes in climate, anthropogenic emissions, and land use are included, the SOA forcing is -0.07 W m(-2), even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.
引用
收藏
页码:12685 / 12690
页数:6
相关论文
共 48 条
[1]   Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City [J].
Adachi, K. ;
Buseck, P. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (21) :6469-6481
[2]   Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest [J].
Bateman, Adam P. ;
Gong, Zhaoheng ;
Harder, Tristan H. ;
de Sa, Suzane S. ;
Wang, Bingbing ;
Castillo, Paulo ;
China, Swarup ;
Liu, Yingjun ;
O'Brien, Rachel E. ;
Palm, Brett B. ;
Shiu, Hung-Wei ;
Cirino, Glauber G. ;
Thalman, Ryan ;
Adachi, Kouji ;
Alexander, M. Lizabeth ;
Artaxo, Paulo ;
Bertram, Allan K. ;
Buseck, Peter R. ;
Gilles, Mary K. ;
Jimenez, Jose L. ;
Laskin, Alexander ;
Manzi, Antonio O. ;
Sedlacek, Arthur ;
Souza, Rodrigo A. F. ;
Wang, Jian ;
Zaveri, Rahul ;
Martin, Scot T. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (03) :1759-1773
[3]   Limitations in the enhancement of visible light absorption due to mixing state [J].
Bond, Tami C. ;
Habib, Gazala ;
Bergstrom, Robert W. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D20)
[4]   The mixing state of carbonaceous aerosol particles in northern and southern California measured during CARES and CalNex 2010 [J].
Cahill, J. F. ;
Suski, K. ;
Seinfeld, J. H. ;
Zaveri, R. A. ;
Prather, K. A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (22) :10989-11002
[5]   Future climate impacts of direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases [J].
Chen, Wei-Ting ;
Liao, Hong ;
Seinfeld, John H. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D14)
[6]   Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation [J].
D'Andrea, S. D. ;
Navarro, J. C. Acosta ;
Farina, S. C. ;
Scott, C. E. ;
Rap, A. ;
Farmer, D. K. ;
Spracklen, D. V. ;
Riipinen, I. ;
Pierce, J. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (05) :2247-2268
[7]   Simplified mechanism for new particle formation from methanesulfonic acid, amines, and water via experiments and ab initio calculations [J].
Dawson, Matthew L. ;
Varner, Mychel E. ;
Perraud, Veronique ;
Ezell, Michael J. ;
Gerber, R. Benny ;
Finlayson-Pitts, Barbara J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (46) :18719-18724
[8]   Internally mixed atmospheric aerosol particles: Hygroscopic growth and light scattering [J].
Freney, Evelyn J. ;
Adachi, Kouji ;
Buseck, Peter R. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
[9]   Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols [J].
Fu, Tzung-May ;
Jacob, Daniel J. ;
Wittrock, Folkard ;
Burrows, John P. ;
Vrekoussis, Mihalis ;
Henze, Daven K. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D15)
[10]   Aqueous-phase reactive uptake of dicarbonyls as a source of organic aerosol over eastern North America [J].
Fu, Tzung-May ;
Jacob, Daniel J. ;
Heald, Colette L. .
ATMOSPHERIC ENVIRONMENT, 2009, 43 (10) :1814-1822