Conditional modulation of spike-timing-dependent plasticity for olfactory learning

被引:156
作者
Cassenaer, Stijn [1 ,2 ]
Laurent, Gilles [1 ,3 ]
机构
[1] CALTECH, Div Biol, Pasadena, CA 91125 USA
[2] CALTECH, Broad Fellows Program Brain Circuitry, Pasadena, CA 91125 USA
[3] Max Planck Inst Brain Res, D-60528 Frankfurt, Germany
关键词
DROSOPHILA MUSHROOM BODY; SYNAPTIC PLASTICITY; ODOR REPRESENTATIONS; NEURONS; MEMORY; DOPAMINE; LOCUST; BODIES; BRAIN; OSCILLATIONS;
D O I
10.1038/nature10776
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mushroom bodies are a well-known site for associative learning in insects. Yet the precise mechanisms that underlie plasticity there and ensure their specificity remain elusive. In locusts, the synapses between the intrinsic mushroom body neurons and their postsynaptic targets obey a Hebbian spike-timing-dependent plasticity (STDP) rule. Although this property homeostatically regulates the timing of mushroom body output, its potential role in associative learning is unknown. Here we show in vivo that pre-post pairing causing STDP can, when followed by the local delivery of a reinforcement-mediating neuromodulator, specify the synapses that will undergo an associative change. At these synapses, and there only, the change is a transformation of the STDP rule itself. These results illustrate the multiple actions of STDP, including a role in associative learning, despite potential temporal dissociation between the pairings that specify synaptic modification and the delivery of reinforcement-mediating neuromodulator signals.
引用
收藏
页码:47 / U62
页数:7
相关论文
共 45 条
[1]   Synaptic plasticity: taming the beast [J].
Abbott, L. F. ;
Nelson, Sacha B. .
NATURE NEUROSCIENCE, 2000, 3 (11) :1178-1183
[2]   Roles for Drosophila mushroom body neurons in olfactory learning and memory [J].
Akalal, David-Benjamin G. ;
Wilson, Curtis F. ;
Zong, Lin ;
Tanaka, Nobuaki K. ;
Ito, Kei ;
Davis, Ronald L. .
LEARNING & MEMORY, 2006, 13 (05) :659-668
[3]   Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type [J].
Bi, GQ ;
Poo, MM .
JOURNAL OF NEUROSCIENCE, 1998, 18 (24) :10464-10472
[5]   Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts [J].
Cassenaer, Stijn ;
Laurent, Gilles .
NATURE, 2007, 448 (7154) :709-U12
[6]   Writing Memories with Light-Addressable Reinforcement Circuitry [J].
Claridge-Chang, Adam ;
Roorda, Robert D. ;
Vrontou, Eleftheria ;
Sjulson, Lucas ;
Li, Haiyan ;
Hirsh, Jay ;
Miesenboeck, Gero .
CELL, 2009, 139 (02) :405-415
[7]   Olfactory memory formation in Drosophila:: From molecular to systems neuroscience [J].
Davis, RL .
ANNUAL REVIEW OF NEUROSCIENCE, 2005, 28 :275-302
[8]   ASSOCIATIVE ODOR LEARNING IN DROSOPHILA ABOLISHED BY CHEMICAL ABLATION OF MUSHROOM BODIES [J].
DEBELLE, JS ;
HEISENBERG, M .
SCIENCE, 1994, 263 (5147) :692-695
[9]   An engram found? - Evaluating the evidence from fruit flies [J].
Gerber, B ;
Tanimoto, H ;
Heisenberg, M .
CURRENT OPINION IN NEUROBIOLOGY, 2004, 14 (06) :737-744
[10]   PKA Dynamics in a Drosophila Learning Center: Coincidence Detection by Rutabaga Adenylyl Cyclase and Spatial Regulation by Dunce Phosphodiesterase [J].
Gervasi, Nicolas ;
Tchenio, Paul ;
Preat, Thomas .
NEURON, 2010, 65 (04) :516-529