Tetraruthenium Polyoxometalate as an Atom-Efficient Bifunctional Oxygen Evolution Reaction/Oxygen Reduction Reaction Catalyst and Its Application in Seawater Batteries

被引:25
|
作者
Lee, Cheolmin [1 ,2 ]
Jeon, Dasom [1 ,2 ]
Park, Jehee [1 ]
Lee, Wonsuk [1 ]
Park, Jaehyun [1 ]
Kang, Seok Ju [1 ]
Kim, Youngsik [1 ]
Ryu, Jungki [1 ,2 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Dept Energy Engn, Ulsan 44919, South Korea
[2] Ulsan Natl Inst Sci & Technol UNIST, Emergent Hydrogen Technol R&D Ctr, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
polyoxometalate; bifunctional catalysts; seawater battery; oxygen evolution reaction; oxygen reduction reaction; WATER OXIDATION; ELECTROCATALYSTS; NANOPARTICLES; DISSOLUTION; CARBON;
D O I
10.1021/acsami.0c07225
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Although development and utilization of efficient catalysts with earth-abundant and cheap elements are desired, precious noble metal-based catalysts are still widely used and studied due to the urgent need to address energy and environmental issues. Polyoxometalates (POMs) can be excellent candidates in this context. In this study, we found that oxo-bridged tetraruthenium polyoxometalate (RuPOM) exhibits excellent electrocatalytic activity for both oxygen evolution and reduction reactions (OER and ORR) with minimal use of noble metal elements and can be used for the development of efficient seawater batteries (SWBs). The deposition of RuPOM on a desired electrode with conducting carbon Ketjen black (KB) by the simple slurry coating method imparted bifunctional OER/ORR activity to the underlying electrode. Although the mass activity was similar, RuPOM/KB mixtures exhibited superior activity even compared to commercially available Pt/C when comparing the activity per noble metal element. Based on these findings, we employed RuPOM to develop efficient SWBs. RuPOM significantly lowered the charging potential and increased the discharging potential of SWBs, which are related to OER and ORR, respectively. This study can provide insights into the development of POM-based electrocatalysts and their application in energy storage and conversion devices.
引用
收藏
页码:32689 / 32697
页数:9
相关论文
共 50 条
  • [1] Bifunctional Catalysts for Reversible Oxygen Evolution Reaction and Oxygen Reduction Reaction
    Wu, Xing
    Tang, Chongjian
    Cheng, Yi
    Min, Xiaobo
    Jiang, San Ping
    Wang, Shuangyin
    CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (18) : 3906 - 3929
  • [2] A strongly cooperative spinel nanohybrid as an efficient bifunctional oxygen electrocatalyst for oxygen reduction reaction and oxygen evolution reaction
    Zhang, Ya-Qian
    Li, Meng
    Hua, Bin
    Wang, Yue
    Sun, Yi-Fei
    Luo, Jing-Li
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 236 : 413 - 419
  • [3] Zn Single Atom Catalyst for Highly Efficient Oxygen Reduction Reaction
    Song, Ping
    Luo, Mi
    Liu, Xiaozhi
    Xing, Wei
    Xu, Weilin
    Jiang, Zheng
    Gu, Lin
    ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (28)
  • [4] Application of Oxygen Reduction Reaction, Oxygen Evolution Reaction and Hydrogen Evolution Reaction in Electrochemical Biosensing
    Zhou, Jianlin
    Qin, Ping
    Liu, Weiyin
    Liu, Yuwei
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (11):
  • [5] Efficient Bifunctional Fe/C/N Electrocatalysts for Oxygen Reduction and Evolution Reaction
    Zhao, Yong
    Kamiya, Kazuhide
    Hashimoto, Kazuhito
    Nakanishi, Shuji
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (05): : 2583 - 2588
  • [6] A Fe-Ni-Zn triple single-atom catalyst for efficient oxygen reduction and oxygen evolution reaction in rechargeable Zn-air batteries
    Tsai, Jui-En
    Hong, Wei-Xiang
    Pourzolfaghar, Hamed
    Wang, Wei-Hsuan
    Li, Yuan-Yao
    CHEMICAL ENGINEERING JOURNAL, 2023, 460
  • [7] A Fe-Ni-Zn Triple Single-Atom Catalyst for Efficient Oxygen Reduction and Oxygen Evolution Reaction in Rechargeable Zn-Air Batteries
    Tsai, Jui-En
    Hong, Wei-Xiang
    Pourzolfaghar, Hamed
    Wang, Wei-Hsuan
    Li, Yuan-Yao
    SSRN, 2022,
  • [8] High-Performance Perovskite Bifunctional Electrocatalysts for Oxygen Reduction Reaction and Oxygen Evolution Reaction
    Liu, Jiankang
    Zhang, Tingting
    Ji, Feng
    Liu, Zhongyi
    Wang, Zhiyuan
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (07): : 8852 - 8861
  • [9] Design of bifunctional air electrodes based on the reaction fields between oxygen reduction reaction and oxygen evolution reaction
    Ikezawa, Atsunori
    Seki, Kotaro
    Arai, Hajime
    ELECTROCHIMICA ACTA, 2021, 394
  • [10] Bifunctional mechanism of oxygen evolution reaction and oxygen reduction reaction induced by surface reconstruction in Perovskite electrocatalysts
    Chen, Hongpeng
    Xie, Haonan
    Yang, Chen
    Pang, Jinshuo
    Zhao, Naiqin
    He, Chunnian
    Liu, Enzuo
    ELECTROCHIMICA ACTA, 2024, 491