Spatial modelling for mixed-state observations

被引:1
作者
Hardouin, Cecile [1 ]
Yao, Jian-Feng [2 ]
机构
[1] Univ Paris 01, SAMOS MATISSE Ctr Econ Sorbonne, F-75634 Paris 13, France
[2] Univ Rennes 1, IRMAR, F-35042 Rennes, France
来源
ELECTRONIC JOURNAL OF STATISTICS | 2008年 / 2卷
关键词
Multivariate analysis; Distribution theory; Mixed-state variables; Auto-models; Spatial cooperation; Markov random fields;
D O I
10.1214/08-EJS173
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In several application fields like daily pluviometry data modelling, or motion analysis from image sequences, observations contain two components of different nature. A first part is made With discrete values accounting for some symbolic information and a second part records a continuous (real-valued) measurement. We call such type of observations "mixed-state observations". This paper introduces spatial models suited for the analysis of these kinds of data. We consider multi-parameter auto-models whose local conditional distributions belong to a mixed state exponential family. Specific examples with exponential distributions are detailed, and we present some experimental results for modelling motion measurements from video sequences.
引用
收藏
页码:213 / 233
页数:21
相关论文
共 12 条
[1]  
AILLIOT P, 2006, SPACE TIME MODELING
[2]  
Arnold Barry C, 1999, SPRINGER SERIES STAT
[3]  
BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
[4]   Mixed-state auto-models and motion texture modeling [J].
Bouthemy, P. ;
Hardouin, C. ;
Piriou, G. ;
Yao, J. .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 25 (03) :387-402
[5]   NEW MODELS FOR MARKOV RANDOM-FIELDS [J].
CRESSIE, N ;
LELE, S .
JOURNAL OF APPLIED PROBABILITY, 1992, 29 (04) :877-884
[6]  
DAVID J, 2003, J R STAT SOC C-APPL, V52, P487
[7]   Motion recognition using nonparametric image motion models estimated from temporal and multiscale co-occurrence statistics [J].
Fablet, R ;
Bouthemy, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (12) :1619-1624
[8]  
GUYON X, 1995, PROBABILITY ITS APPL
[9]  
HARDOUIN C, 2006, MULTIPARAMETER AUTOM
[10]  
MARK S, 2000, J MULTIVARIATE ANAL, V73, P199